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It is well-known that fluidized beds are usually unstable to small perturbations and
that this leads to the primary bifurcation of vertically travelling plane wavetrains.
These one-dimensional periodic waves have been shown recently to be unstable to
two-dimensional perturbations of large transverse wavelength in gas-fluidized beds.
Here, this result is generalized to include liquid-fluidized beds and to compare typical
beds fluidized with either air or water. It is shown that the instability mechanism
remains the same but there are big differences in the ratio of the primary and
secondary growth rates in the two cases. The tendency is that the secondary growth
rates, scaled with the amplitude of a fully developed plane wave, are of similar
magnitude for both gas- and liquid-fluidized beds, while the primary growth rate
is much larger in the gas-fluidized bed. This means that the secondary instability
is accordingly stronger than the primary instability in the liquid-fluidized bed, and
consequently sets in at a much smaller amplitude of the primary wave. However,
since the waves in the liquid-fluidized bed develop on a larger time and length scale,
the primary perturbations need longer time and thereby travel farther until they
reach the critical amplitude. Which patterns are more amenable to being visually
recognized depends on the magnitude of the initially imposed disturbance and the
dimensions of the apparatus. This difference in scale plays a key role in bringing
about the differences between gas- and liquid-fluidized beds; it is produced mainly by
the different values of the Froude number.

1. Introduction
Puzzling differences in the behaviour of particle assemblies fluidized uniformly by

a gas or a liquid have concerned researchers for decades. While the first impression
was that only fluidization with a gas leads to bubbling behaviour, it was found later
that this phenomenon can also occur in liquid-fluidized beds (Didwania & Homsy
1981). On the other hand, liquid-fluidized beds seemed to favour more modest wave
patterns in the form of one- and multi-dimensional travelling waves (El-Kaissy &
Homsy 1976). In fact, the observation of plane wavetrains moving steadily through
the bed while acquiring transverse structure triggered the suspicion that both two-
dimensional waves and bubbles might result from a secondary instability at which
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the primarily unstable vertically travelling one-dimensional wave is overtaken by a
more complex pattern. To some extent, this corresponded neatly with theoretical
considerations based on volume-averaged equations of motion for the particle and
fluid phases which predicted that a uniformly fluidized suspension is most unstable
to one-dimensional perturbations (Anderson & Jackson 1968) and that this leads
to the onset of periodic travelling plane waves (Needham & Merkin 1986). It was
also encouraging to find (Anderson & Jackson 1968) that the growth rate of initial
perturbations is typically much higher in gas-fluidized beds which would lead to
faster development of concentration gradients in them. But most of the subsequent
analytical studies were restricted to one-dimensional treatments and thus could not
address the question of a secondary, transverse instability, nor were multi-dimensional
numerical computations (e.g. Pritchett, Blake & Garg 1978; Kuipers, Prins & van
Swaaij 1991; Hernández & Jiménez 1991) able to resolve the origin of such a transition
or to explain the mentioned differences. So the major questions remained: is the usual
modelling able to account for these differences and where do they come from?

The problem of a secondary instability involving the transition from a one- to
a two-dimensional pattern in fluidized beds and other multi-phase flows has been
attacked recently with various approaches. Batchelor (1993) has related the secondary
instability in a gas-fluidized bed to the overturning instability of an unbounded
stratified fluid (Batchelor & Nitsche 1991). Göz has analysed primary bifurcations of
two-dimensional travelling waves directly from the uniform state (1992, 1995a) and
investigated vertically and oblique travelling waves in detail (1993a, b), finding only
minor differences between gas- and liquid-fluidized beds. He then (1995c) showed
the relevance of these primary two-dimensional waves and that of pure transverse
perturbation modes of the uniform state to the onset of a secondary instability
in gas-fluidized beds, as one or two of these modes become unstable when the
amplitude of the plane wavetrain exceeds a threshold proportional to the square
of the transverse wavenumber. In another study Göz (1995b) considered a small
Froude number approximation to two-dimensional multi-phase flows and found that
gas- and liquid-fluidized beds exhibited similar bifurcation behaviour. The differences
between gas- and liquid-fluidized beds are therefore not likely to be manifested
through a qualitatively different bifurcation structure; quantitative differences in the
length and time scales associated with these beds are likely to play an important
role in distinguishing between bubbling and non-bubbling systems. It was indeed
noted by Anderson, Sundaresan & Jackson (1995) that the growth rate of primary,
one-dimensional disturbances from an unstable uniform state in a bubbling system
is comparable to that of secondary, two-dimensional perturbations from a fully
developed one-dimensional travelling wave, while in non-bubbling systems the former
growth rate is significantly smaller than the latter. One can readily appreciate why
this difference in the relative growth rates will influence the manner in which high-
amplitude two-dimensional travelling waves evolve from an unstable uniform state;
but it is hardly obvious why relative growth rates determine whether a given system
will bubble or not.

Glasser, Kevrekidis & Sundaresan (1996, 1997) found through numerical bifurcation
analysis that the principal behaviour of beds fluidized with water or air is the same;
in both cases one obtains a transition from the state of uniform fluidization to a one-
and then a two-dimensional vertical travelling wave with a bubble-like structure. They
noted that in some solutions containing a bubble-like hole the particles accelerate
as they enter the hole through the roof and decelerate as they exit the hole at the
bottom, while in others the particles experience an additional stage of deceleration
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and re-acceleration. Although both types of solutions were found to be locally
stable, solutions of the former type evolved smoothly in transient integration of the
equations of motion when an unstable uniform state or one-dimensional travelling
wave was subjected to a two-dimensional perturbation. In the latter case the transients
neither reached the fully developed bubble-like solution nor did they settle down
into any regular pattern. These authors proposed that fluidized systems whose fully
developed bubble-like solutions belong to this latter type be labelled as non-bubbling.
Interestingly, they found that the relative growth rate criterion suggested by Anderson
et al. (1995) is indeed a good indicator as to whether a system will bubble or not.
These observations suggest a closer look at the growth rates of the primary and
secondary instabilities in an attempt to elucidate the appropriate scales for these
quantities.

With this in mind, we extend the previous analysis of Göz (1995c) to liquid-
fluidized beds by incorporating the terms accounting for fluid inertia and viscosity
in the momentum equation for the continous phase. We shall see that the instability
mechanism is the same for both gas- and liquid-fluidized beds. Having thus ruled out
qualitative differences between gas- and liquid-fluidized beds in our model we look
for quantitative discrepancies. We discuss various examples and find that for typical
parameters of air- and water-fluidized beds the secondary growth rates, scaled with
the amplitude of quasi-steady plane waves, are of comparable magnitude, in stark
contrast to the primary rates. In the cases considered the secondary instability is
stronger than the primary instability in the water-fluidized bed, and overwhelms the
plane wave at a smaller amplitude. But because the waves in the water-fluidized bed
grow more slowly, they need more time and space to develop, so that there is a better
chance to observe the rise of plane waves and the development of two-dimensional
structures – if the vessel is large enough. On the other hand, if disturbances imposed
at, for instance, the orifices at the bottom of the bed are as large as the critical
amplitude, two-dimensional patterns will be observed right away.

The time and length scales depend on the fluidization velocity, which can easily
change by one or two orders of magnitude with greatly varying bed parameters; this
affects the two basic non-dimensional parameters in our model, namely the Froude
and the Reynolds numbers. Compared to that, the often neglected terms describing
fluid inertia and viscosity in the momentum equation for the continous phase seem to
be of less importance. Although the analysis presented here does not go beyond the
point of onset of a secondary bifurcation and thus does not allow any solid conclusion
about the formation of stable two-dimensional travelling waves, it points in the same
direction as the studies by Anderson et al. (1995) and Glasser (1996). In these we may
see a confirmation of the empirical criterion of Wilhelm & Kwauk (1948) that beds
with large Froude number bubble while beds with small Froude number do not (our
Froude number is based on the velocity of uniform fluidization at a certain voidage
value and the particle radius). The important parameter behind this is the (square
of the) fluidization velocity u0. An asymptotic analysis near the stability limit carried
out in the present study reveals that the maximum dimensionless primary growth rate
is proportional to the Reynolds number, so that the magnitude of the dimensional
growth rate is determined by the strength of the instability and the value of ρsu

2
0/µ

0
s ,

which is proportional to the Froude number. Here ρs is the particle density and µ0
s

is the viscosity of the particulate phase. The large differences between the primary
growth rates in air- and water-fluidized beds are then readily explained in terms of
this scale. The situation is more involved with the secondary growth rates, but based
on another asymptotic analysis for small transverse wavenumbers we have derived
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an approximate expression for the maximum (dimensional) secondary growth rates
and shown that their values stay within the same order of magnitude over the whole
range of Froude numbers of practical interest (i.e. except for extremely small or large
Froude numbers).

The present paper, devoted primarily to a study of the stability of plane waves to
two-dimensional perturbations employing a Fourier decomposition, is structured as
follows. We begin by writing the equations of motion in perturbation form around
the uniform base state and decomposing the nonlinear expressions into quadratic
and higher-order terms (§2). This enables us to derive a scalar equation in which the
linear part operates on the voidage variable only, and similarly simple-in-structure
equations for the other variables. In §3 we consider the linear problems, first around
the uniform state, then around a growing one-dimensional wave. We derive an
approximate expression for the maximum growth rate of weakly unstable beds which
reveals ρsu

2
0/µ

0
s as the correct scale for the growth rate (§3.1). Next we break down

the equations for the linear stability of small-amplitude one-dimensional waves into
equations for the harmonic components of all variables (§3.2) and derive three coupled
equations for the basic Fourier components of the voidage by eliminating the other
variables (§3.3). These equations are solved for small times giving an indication of
the initial secondary growth rates. The approximation becomes unreliable for larger
amplitudes of the primary disturbance and also shows a singularity for vanishing
transverse wavenumber. This necessitates a rescaling of the secondary growth rate
and the transverse wavenumber with the amplitude of the plane wave (§4). For typical
parameters it turns out that the scaled secondary growth rates are of comparable
magnitude for both gas- and liquid-fluidized beds. In §5 we derive approximate
expressions for secondary growth rates, critical amplitudes, and length and time
scales, and evaluate their Froude number scaling. Section 6 contains our conclusions.

2. Equations of motion in perturbation form
We will begin with a description of the volume-averaged equations of motion for

the fluid and particle phases cast in a dimensionless form (§2.1). For the purpose
of the present study, it is convenient to rewrite these equations in the form of a
perturbation of a uniformly fluidized state (§2.2).

2.1. Volume-averaged equations of motion

The volume-averaged equations of motion for fluidized beds (Anderson & Jackson
1968), when formulated in a frame moving vertically upwards with constant velocity
ω (Göz 1992, 1995c), take the form

−∂tφ+ ∇ · [(1− φ) (v − ωk)] = 0, (2.1a)

∂tφ+ ∇ · [φ(u− ωk)] = 0, (2.1b)

F(1− φ) [∂tv + (v − ωk) · ∇v] = −(1− φ)k + B(φ)(u− v)− ∇ · σs
−(1− φ)∇p+ α1νµ(1− φ)(∆ + κ̄∇∇·)u, (2.1c)

Fδφ [∂tu+ (u− ωk) · ∇u] = −δφk − B(φ)(u− v)
−φ∇p+ νµ[1− α2(1− φ)](∆ + κ̄∇∇·)u. (2.1d)

The variables are the fluid (liquid or gas) volume fraction or voidage φ, the effective
fluid pressure p, and the laboratory-frame particle- and fluid-phase velocities v and u,
respectively. Such a ‘mixed’ representation using a moving coordinate system and a
different frame of reference for calculating the velocities is unconventional but useful
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for the purpose of the present study as it introduces the wave speed ω, which we will
use as the control or bifurcation parameter. The second lines in (2.1c, d) account for
the contributions of the stress tensor of the fluid phase; since the fluid is assumed
to be incompressible, its pressure has to be determined as part of the solution. We
assume a Newtonian form for the stress tensor of the solid phase, i.e.

σs = ps I −
µ

µ0
s

{λs(φ) (∇ · v) I + µs(φ)[∇v + (∇v)T − 2
3
(∇ · v) I ]} , (2.1e)

and write

∇ps(φ) = G(φ)∇φ with 0 > p′s(φ) = G(φ) , (2.1f)

taking ps to be a monotonically decreasing function of the voidage. Specifically, we
assume

ps(φ) = g0

(1− φ)m1

(φ− φcp)m2
(2.1g)

with m1 = 1 and either m2 = 0 (⇒ G ≡ −g0) or m2 = 2 (⇒ G′ > 0); the close packing
limit is taken to be φcp = 0.35. In most of the examples discussed in the present paper,
we will assume that m1 = 1 and m2 = 0, as it is now well established that such a linear
closure for ps is enough to capture phenomena such as the existence of a small region
of stable uniform fluidization, the birth of one-dimensional vertically travelling waves
through the loss of stability of this uniformly fluidized state (Needham & Merkin
1986; Göz 1993b), and the emergence of two-dimensional travelling waves having a
bubble-like hole from the one-dimensional waves (Göz 1995c; Glasser et al. 1996,
1997). As nonlinear expressions for ps(φ) are frequently used in the literature (for
example, see Anderson et al. 1995), we will occasionally touch upon the implications
of such a nonlinearity for the secondary instability by considering the case of m1 = 1
and m2 = 2.

The equations have been made dimensionless by using the particle radius rp as
length scale and the fluidization velocity u0 = u0k as the basis for the velocity and
time (rp/u0) scales. Here k is the unit vector parallel to the z-axis pointing against
gravity; the transverse direction will be denoted by y. Both effective pressure p and
bulk modulus/interparticle pressure G(φ) have been rescaled with ρsgrp, where g is
the acceleration due to gravity and ρs represents the density of the particles. The
density ratio of the two phases is denoted by δ = ρf/ρs, and the ratio of the shear
viscosity coefficients is given by ν = µf/µ

0
s , where µ0

s = µs(φ0). The shear and bulk
viscosity coefficients of the particulate phase, µs and λs respectively, may depend on
the voidage. Thus we end up with the non-dimensional parameters F = u2

0/(grp), δ, ν,
and a particle-based Reynolds number R = ρsu0rp/µ

0
s . In addition, we introduce the

coefficients µ = F/R, κ = (λ0
s + µ0

s /3)/µ0
s and κ̄ = (λf + µf/3)/µf . Within this scaling,

the drag coefficient is assumed to be of the form

B(φ) = 9
2
νµ

1− φ
φn

. (2.2)

The exponent n depends on the Reynolds number for fluid flow around an isolated
particle settling under gravity (Richardson & Zaki 1954) and n is approximately equal
to 3 when this Reynolds number is small. Equations (2.1) admit as a solution the
uniformly fluidized state

φ = φ0 , v = 0 , u0 = k , ∇p0 = − [1− φ0(1− δ)] k ≡ p′0k , (2.3)
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and it can be readily shown that

φn+1
0 =

9

2

νµ

1− δ , B0 ≡ B(φ0) = (1− δ)φ0(1− φ0) . (2.4)

We have written the equations in such a way that they reduce to the system of
equations analysed by Göz (1992) for α1,2 = 0 (i.e. α1 = α2 = 0), and to that studied
by Glasser et al. (1996, 1997) for α1,2 = 1, thus making comparisons as straightforward
as possible. Note that in the latter papers the voidage is given by 1− φ, the effective
fluid pressure is denoted by pf , and the bulk viscosity coefficients are taken to be
zero, so that κ = κ̄ = 1/3.

The problem of general closure for the locally averaged equations of motion
remains unsolved. In spite of this, it is now clear that very simple, physically credible
closure relations, such as the ones described above, suffice to distinguish between
bubbling and non-bubbling systems. The model analysed in this study is by no
means complete; for example, it does not consider the virtual mass effect which may
become important in liquid-fluidized beds. We have not included this effect, as it
has already been shown by Anderson et al. (1995) and Glasser et al. (1996, 1997)
that a distinction between bubbling and non-bubbling systems is possible even if one
neglects the virtual mass term; that is, the effect of the virtual mass term is only
quantitative and not qualitative. Furthermore, the virtual mass term has very little
effect on the occurrence of the primary instability, and we expect it to play a minor
(quantitative) role for our results. In addition, we want to compare the outcome of
the analysis to the previously mentioned numerical studies without virtual mass which
showed the sought-for distinction between bubbling and non-bubbling systems. It is
for these reasons that we have not included the virtual mass term in the present
analysis. On similar grounds, we have neglected a possible dependence of both the
drag and viscosity coefficients on the relative velocity of the two phases.

2.2. Equations in terms of deviation variables

In order to get the most general and transparent approach to the treatment of the
nonlinear problem, we rewrite the equations (2.1) in form of a perturbation of the
uniform state, i.e.

φ = φ0 + φ̃ , p = p0 + p̃ , v = ṽ , u = k + ũ , (2.5)

and move all nonlinear terms to the right-hand sides. This will produce a system
of equations in terms of the perturbation variables ((2.6a–d) below), which we will
combine to produce a scalar equation in which the linear terms contain the voidage
only ((2.8) below). Similarly, we can derive equations whose linear parts couple
the pressure with the voidage (2.7), and the velocities with voidage and pressure
(2.10) and (2.11), respectively; of course, the nonlinear terms still contain all the
variables. This formulation has the advantage of a maximal decoupling of the variables
(corresponding to a ‘diagonalization’ of the system of equations) and highlights the
role of the voidage variable.

Expanding the coefficients B and G and retaining cubic terms, we obtain the
following set of equations:

−∂tφ̃+ (1− φ0)∇ · ṽ + ω∂zφ̃ = ∇ · (φ̃ṽ) ≡ R1 , (2.6a)

∂tφ̃+ φ0 ∇ · ũ+ (1− ω)∂zφ̃ = −∇ · (φ̃ũ) ≡ R2 , (2.6b)

F(1− φ0)(∂tṽ − ω∂z ṽ)− µ(∆ + κ∇∇·)ṽ − B0(ũ− ṽ)− b1 φ̃ k + G0∇φ̃
+(1− φ0)∇p̃− ν1(∆ + κ̄∇∇·)ũ = R3 , (2.6c)
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Fδφ0[∂tũ+ (1− ω)∂z ũ]− ν2(∆ + κ̄∇∇·)ũ+ B0(ũ− ṽ) + bδ φ̃ k + φ0∇p̃ = R4 , (2.6d)

with the obvious notation B0 = B(φ0), B
′
0 = B′(φ0), etc.; nonlinear terms like R3,4

and constants like b1,δ , ν1,2 will be given in Appendix A.
Upon taking the divergence of (2.6c) and inserting (2.6a, b), an equation for the

pressure is obtained, in which the linear terms depend on the voidage only:

(1− φ0)∆p̃ = −F ¨̃φ+ 2Fω ˙̃φ′ − G0∆φ̃− Fω2φ̃′′ − FE ˙̃φ

+ [b1 − FE(1− φ0 − ω)] φ̃′ − (c1ω + α1FH)∆φ̃′ + c1∆
˙̃φ+ Rp , (2.7)

where we have denoted the time derivative with a dot and the derivative with respect
to z with a prime. For Rp, c1, E, H see Appendix A.

The same can be done with (2.6d), so that by forming φ0∇· (2.6c)− (1−φ0)∇· (2.6d)
the linear pressure term is eliminated and a scalar equation is obtained, in which the
linear terms contain the voidage only:

L φ̃ = Rφ(Ũ ) , Ũ = (φ̃, p̃, ṽ, ũ) . (2.8)

Here, L represents the linear operator

L = A∂2
t + 2(C − Aω)∂t∂z −M∆ + (Aω2 − 2Cω + C)∂2

z

+E∂t + (D − Eω)∂z + (J̃ω − H̃)∆∂z − J̃∆∂t , (2.9)

while the nonlinear terms Rφ and the various constants are presented in Appendix A.
In addition, using again (2.6a, b), equations (2.6c) and (2.6d) may be rewritten as

F(1− φ0)(˙̃v − ωṽ′)− µ∆ṽ − B0(ũ− ṽ)− ν1∆ũ

= b1 φ̃ k − G0∇φ̃+ µ1∇ ˙̃φ− µ2∇φ̃′ − (1− φ0)∇p̃+ Rv , (2.10)

Fδφ0[˙̃u+ (1− ω)ũ′]− ν2∆ũ+ B0(ũ− ṽ)

= −bδ φ̃ k −
ν2κ̄

φ0

∇[ ˙̃φ+ (1− ω)φ̃′]− φ0∇p̃+ Ru , (2.11)

where the nonlinear terms Rv,u and the new constants µ1,2 can again be found in
Appendix A.

If we assume that the perturbation from the uniform state is small, then we might
be able to neglect most of the nonlinear terms in (2.7), (2.10) and (2.11), so that these
equations would determine pressure and velocities as an essentially linear functional of
the voidage. Inserting the results into the quadratic terms of (2.8) would allow us
to eliminate the other variables up to this order of approximation, and would yield
a better description of the behaviour of the voidage than the linearization around
the uniform state. In fact, because we want to study the fate of two-dimensional
perturbations of a growing or fully developed one-dimensional wave, and the analysis
of Göz (1995c) for gas-fluidized beds (more precisely, δ = ν = 0 in (2.1d)) shows
that for this purpose it is sufficient to obtain the leading-order approximations to the
variables, we shall need only a few contributions from the quadratic terms in (2.7),
(2.10) and (2.11).

3. The linearized problems
When the state of uniform fluidization becomes unstable, the fastest growing mode

is a one-dimensional travelling wave whose wavefronts have no horizontal structure
(Anderson & Jackson 1968). In this section, we outline the procedure adopted by us
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to analyse these one-dimensional waves and revisit the problem of the linear stability
of the uniform state to bring forth the origin of the large differences between the
growth rates of these waves in typical gas- and liquid-fluidized beds (§3.1). We will
then consider the problem of stability of these one-dimensional waves to transverse
perturbations. The mathematical preliminaries for this analysis will be provided in
§3.2. Section 3.3 will address the problem of the initial growth rate of transverse
perturbations superimposed on growing one-dimensional waves.

We now seek an approximation of a one-dimensional solution U 1(z, t), which is
assumed to be small, i.e. U 1 = εU 11 + O(ε2), ε� 1. Hence,

Lφ1 = εLφ11 + O(ε2) = Rφ(εU 11 + O(ε2)) = O(ε2) , Rp,v,u(U 1) = O(ε2) , (3.1)

so that to leading order the linear problem Lφ11(z, t) = 0 has to be solved; then the
other variables follow easily from the linear parts of (2.7), (2.10), (2.11).

Upon linearizing the equations around U 1, we obtain

Lφ = R′φ(U 1) ·U , with R′φ(U 1) = O(ε) , R′p,v,u(U 1) = O(ε) ,

so that we can utilize the approximation

Lφ =
δ

δU
Rφ|quadratic terms

(εU 11) ·U + O(ε2) ·U ,

R′p,v,u(U 1) = R′p,v,u(εU 11) + O(ε2).

 (3.2)

In each case, our aim is to find simple relationships between the voidage and the
remaining dependent variables, so that it is possible to replace them in (3.2) and
get an equation for the voidage alone. This is straightforward in the first case, but
requires a large amount of algebra in the second. Since only the quadratic terms play
a role in (3.2), it will be sufficient to neglect most of the nonlinear terms in equations
(2.7), (2.10), and (2.11).

3.1. Approximation of one-dimensional solutions

How to obtain an approximation of fully developed one-dimensional vertically travel-
ling wave solutions has been demonstrated by Göz (1995c) for the much simpler case
δ = ν = 0. However, it has been shown in the same paper that for the calculation
of its transverse stability only the linear approximation is needed. Because we want
to consider the initial stage of growing linear modes as well as the behaviour of
two-dimensional perturbations of these modes, we combine the two approaches by
writing

φ1 = φ+ eiλz + φ− e−iλz, φ+ = vp eσt, φ− = φ̄+, (3.3)

where we must assume |φ+| � 1. For convenience of notation we have replaced εφ11

by φ1. Denoting the linear approximations to the vertical velocity components by v1

and u1 we obtain

(v, u, p)1 = (v1, u1, p)+ eiλz + (v1, u1, p)− e−iλz, (3.4a)

v1+ =
σ − iλω

iλ(1− φ0)
φ+ = v̄1−, p+ = aφ+ = p̄−, (3.4b)

u1+ = −σ + iλ(1− ω)

iλφ0

φ+ = ū1−, (3.4c)
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with

a =
1

λ2(1− φ0)
[F(σ − iλω)2 − G0λ

2 + (σ − iλω)(c1λ
2 + FE)

+iλ(B0/φ0 − b1 − α1FHλ
2)]. (3.5)

The eigenvalues are to be determined from the dispersion relation

A(σ − iλω)2 + (σ − iλω)(E + 2iCλ+ J̃λ2) + iDλ+ (M − C)λ2 + iH̃λ3 = 0. (3.6)

By setting ω = 0 we obtain the usual and often studied eigenvalue problem for
disturbances of the uniform state. Let us briefly recapitulate that the base state is
linearly stable if the two conditions

f(d) > 0, f(h) > 0, (3.7)

with

f(s) = m− c+ 2cs− s2, m =
M

A
, c =

C

A
, d =

D

E
, h =

H̃

J̃
,

are met, but that they are not independent of each other; if δ and ν are smaller than
1, which is the case here, then d > h and f(h) > f(d) (Göz 1992; Göz et al. 1996).
The conditions (3.7) can be understood from the behaviour of the real part of σ for
small (cf. Göz 1995b) and large wavenumbers, namely

Re σ = −A
E
f(d)λ2 ± O(λ4), λ� 1; Re σ → −A

J̃
f(h), λ→∞. (3.8)

Thus a long-wave instability occurs only for f(d) < 0. This condition places an upper
limit on the value of the bulk modulus |G(φ0)| if an instability has to occur at φ = φ0.
We may determine the value of G(φ0), or rather g0 (cf. (2.1g)), by demanding the state
of uniform fluidization to be marginally stable for a critical voidage of φc; this can
be accomplished by selecting the value of g0 via evaluating the condition f(d) = 0 at
φ0 = φc. Notice that g0 can be determined uniquely from φc, but not vice versa.

To see this more clearly, consider the case of constant bulk modulus, G (i.e.
m1 = 1, m2 = 0 in (2.1g)), and δ = 0, upon which the condition f(d) 6 0 becomes
g0 6 g∗(1− φ0)

2φ
2(n+1)
0 , where g∗ is a constant (Needham & Merkin 1986; for δ 6= 0

see Göz 1993b). Choosing a value of g0 between zero and a maximum value yields
two critical voidage values, 0 < φlc < φuc < 1, satisfying f(d) = 0; roughly speaking,
one of these voidage values lies in the dense, the other in the dilute regime of fluidized
beds. Incorporating a nonlinear particle pressure of the type (2.1g) merely shifts the
lower endpoint from 0 to φcp. Thus, for a given g0 = g0(φc), φc representing either the
lower or the upper critical voidage value, a uniformly fluidized state with a voidage
of φ0 will be linearly unstable only if φuc > φ0 > φlc. In practice, φlc > φcp, so the
value of g0 is usually assumed to be larger than g0(φcp).†

In the following, we want to restrict our considerations to the dense regime in
which there is a one-to-one relationship between φ(l)

c and g0, such that g0 increases
with φc; we will henceforth focus our attention on instabilities in a dense fluidized
bed (i.e. φ0 in the vicinity of φlc) and drop the superindex ‘l’.

† We mention in passing that if the value of the bulk modulus respectively g0 is ‘too small’,
then f(h) will also become negative so that Re(σ) tends to a positive constant as the longitudinal
wavelength becomes very short (λ → ∞). This can be avoided in principle by adding regularizing
terms to the equations (Komatsu & Hayakawa 1993; Göz 1995a). This problem does not arise if we
restrict the bulk moduli such that g0 is larger than g0(φcp); so we will not consider the possibility
of f(h) < 0, whose effects on the bifurcation behaviour were discussed by Göz (1992, 1993b).
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Air Water

ρf (g cm−3) 0.0013 1
µf (g cm−1 s−1) 0.000181 0.0100556
gmax

0 229.1 0.0277
g0(φcp) 57.4 0.00778
u0 (cm s−1) 20.37 0.20
F = u2

0/(grp) 28.2 0.00272
R = ρsu0rp/µ

0
s 0.101 0.00099

Table 1. Basic and deduced parameters used for the comparison of an air- and a water-fluidized
bed. For both fluidized beds, ρs = 2.2 g cm−3, rp = 0.015 cm, µ0

s = 6.65 g cm−1 s−1, φ0 = 0.43 and
n = 3, which yields d = 2.85 according to definition (3.7). The g0-quantities are discussed in the text
immediately after (3.8).

At this stage, it is useful to consider specific examples and we choose the two
fluidized beds indicated in table 1. One column in this table gives the parameter
values for a bed of glass beads of 300 µm diameter fluidized by air, while the
other corresponds to the same bed fluidized by water. As we have not derived any
expression for the particle-phase pressure in terms of the physical properties of the
fluidized bed, we cannot determine the value of g0, respectively φc, for each of these
beds and are forced to treat it as a model parameter. In the numerical examples
discussed here, we will consider the case of a constant bulk modulus and examine
the fate of non-uniform solutions emerging from the loss of stability of uniformly
fluidized beds having a voidage φ0 = 0.43. The quantity gmax0 indicated in table 1
refers to the value of the bulk modulus that would render the uniform state φ0 = 0.43
marginally stable. Thus, for any value of g0 smaller than this value, the uniform state
φ0 = 0.43 will be unstable. As noted earlier, for every assumed value of g0, one can
find the corresponding φc (in the dense regime) of the marginally stable uniform state.
As we decrease g0 from gmax0 , the value of φc decreases monotonically from 0.43 and
attains the value of φcp when g0 is equal to the value g0(φcp) shown in table 1.

When φ0 > φc, the uniform state is linearly unstable for a range of longitudinal
wavenumbers 0 < λ < λ0. At least in the vicinity of φc, both λ0 and the maximum
growth rate, Re(σm), which occurs at some intermediate wavenumber λm ∈ (0, λ0),
increase as (φ0−φc) increases; cf. table 2 and figure 1. Now, to illustrate how (φ0−φc)
affects the growth rate vs. longitudinal wavenumber curve, the natural approach would
be to plot such curves for various values of φ0 with a fixed value of φc (for example,
see Anderson et al. 1995). We will adopt a slightly different approach where we will
fix the value of φ0 and vary φc, as it is more convenient for the present purpose. (As
φ0 changes, u0 changes which in turn changes F , R, etc. and it becomes cumbersome
to isolate the effect of (φ0 − φc) from those due to the other changes. In contrast,
if we change φc while keeping φ0 constant, we do not change F , R, etc. and change
only (φ0 − φc).)

Accordingly, we assume that φ0 = 0.43 and consider several different values of φc,
and calculate the value of the constant bulk modulus, g0(φc), for every φc, see table 2.
We then plot the dispersion curves (3.6) (with ω set to zero) for these parameters, see
figure 1, and determine the maximum growth rates and the corresponding wavelengths.
Note that figures 1(a) and 1(b) have been plotted in terms of dimensional quantities.
This is necessary for our ensuing discussion of the correct scaling for the growth rate,
as there exist no unique velocity and time scales for the problem. For the formal



Behaviour of one- and two-dimensional disturbances in fluidized beds 93

Air-Fluidized Bed

φc g0(φc) −f(d) ω0 λ0 λm Re(σm) Re(σ∗m ) (s−1)

0.422 202.7 0.93 2.681 0.0173 0.0108 5.06× 10−4 0.687
0.424 209.1 0.71 2.723 0.0149 0.0095 3.15× 10−4 0.427
0.426 215.6 0.48 2.765 0.0121 0.0079 1.57× 10−4 0.213
0.428 222.3 0.24 2.807 0.0085 0.0058 0.45× 10−4 0.061

Water-Fluidized Bed

φc g0(φc) −f(d) ω0 λ0 λm Re(σm) Re(σ∗m ) (s−1)

0.422 0.02477 0.68 2.709 0.1169 0.0813 7.45× 10−6 9.94× 10−5

0.424 0.02548 0.51 2.744 0.1008 0.0704 4.27× 10−6 5.69× 10−5

0.426 0.02621 0.35 2.779 0.0819 0.0575 1.93× 10−6 2.58× 10−5

0.428 0.02696 0.17 2.814 0.0577 0.0406 0.49× 10−6 0.66× 10−5

Table 2. Primary instability in air- and water-fluidized beds. φ0 = 0.43. All quantities with the
exception of Re(σ∗m ) are dimensionless. Further details on the two fluidized beds can be found in
table 1. The quantity g0(φc) is calculated assuming that the bulk modulus is independent of φ0; see
text immediately after (3.8).

calculations it is convenient to base these scales on the fluidization velocity u0, and
we have included the dimensionless maximum growth rates in table 2, but since u0 is
not a fixed quantity we have eventually to refer to dimensional growth rates.

Next, we get the wave velocities and wavelengths at the stability boundary by
setting σ = 0 in (3.6):

ω0 = c+ (c2 + m− c)1/2, λ2
0 =

E(d− ω0)

J̃(ω0 − h)
. (3.9)

It is at these values where saturated one-dimensional travelling waves bifurcate from
the uniform state†. In addition, we calculate −f(d) through (3.7) as it can be viewed
as a measure of the strength of the instability according to (3.8). From the values
reported in table 2 it is clear that for given (φ0 − φc), the values of f(d) for the two
fluidized beds are of comparable magnitudes.

It is well-known that the maximum dimensional growth rates obtained for parame-
ter values typical of gas-fluidized beds are considerably larger than those obtained for
most liquid-fluidized beds (Anderson & Jackson 1968). Although casting the equa-
tions in a dimensionless form using the particle size, fluidization velocity and particle
density as characteristic quantities (as we have done here) brings the dimensionless
growth rates for the gas- and liquid-fluidized beds closer, they continue to differ by
one or two orders of magnitude; see table 2. A proper scale for this maximum growth
rate in terms of the system parameters has remained elusive so far. We will now
deduce this scaling by examining the weakly unstable case in detail.

As mentioned above, −f(d) measures the strength of the instability, so in the
weakly unstable case we assume it to be small, f(d) = −ε. Because the waves are long

in this situation, we have to introduce λ2 = ελ̂2, and have to scale σ appropriately.
The eigenvalue deduced from (3.6) (with ω set to zero) through such a perturbation

† If f(h) < 0, then there is another solution ω− = c − (f(c))1/2 to the determining equation
f(ω) = 0, cf. Göz (1993b).
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Figure 1. Dimensional primary growth rates Re (σ) vs. the longitudinal wavelength λ for various
values of the bulk modulus resp. φc (cf. table 2). (a) Air-fluidized bed, (b) water-fluidized bed. The
curves are for φc = 0.422 (—), φc = 0.424 (– – –), φc = 0.426 (– - –), φc = 0.428 (- - -). φ0 = 0.43 for
all curves.

analysis becomes

σ = −idλ̂ε1/2 + i
J̃

E
(d− h)λ̂3ε3/2 +

A

E

[
1− 2

J̃

E
(d− c)(d− h)λ̂2

]
λ̂2ε2 + O(ε5/2) .

The growth rate assumes its maximum

Re σm =
A

8J̃(d− c)(d− h)
ε2 + O(ε3) (3.10a)

at λ2
m = εE/[4J̃(d − c)(d − h)] + O(ε2). Furthermore, the strength of the instability,

ε = −f(d), can be expressed in terms of the distance from the stability boundary
via d − ω0 = ε/[2(d − c)] + O(ε2). The scale for the growth rate should therefore
be extracted by analysing the leading term on the right-hand side of (3.10a). From
table 2 we know already that for small (φ0 − φc), the values of f(d) are small and of
comparable magnitudes for the two fluidized beds under consideration. The values
of the quantity (d − c)(d − h) appearing in (3.10a) are also very similar (8.120 and
7.044 for the air- and water-fluidized beds, respectively), so that the difference in the
dimensionless growth rates of the two beds arises primarily as a result of A/J̃ in
(3.10a). As

A

J̃
=

φ0 + δ(1− φ0)

φ0(1 + κ) + O(ν)
(1− φ0)R , (3.10b)
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with a prefactor of comparable magnitude (0.57 and 0.91 for the air- and water-
fluidized beds, respectively), we conclude that the magnitude of the dimensionless
primary growth rate is proportional to the Reynolds number, as long as ε is small.
The dimensional growth rate is then proportional to ε2 and u0R/rp = ρsu

2
0/µ

0
s (with a

proportionality factor of 8.8×10−3 and 16×10−3 for the air- and water-fluidized beds,
respectively), so that for given particle density and viscosity the scale for the growth
rate is set by the square of the fluidization velocity.

In the calculations summarized in table 2, we have assumed identical values for
ρs and µ0

s for both water- and air-fluidized beds. Therefore, the dimensional growth
rate in these two beds at comparable ε should differ by about 104, as the velocities
differ by a factor of 102. We may also bring the Froude number into play by writing
u0R/rp = Fρsgrp/µ

0
s ; although this involves an additional dependency on the particle

radius, the values quoted in the tables indicate the simple criterion of small (large)
growth rates for F � 1 (F � 1). Furthermore, these considerations suggest a natural
time scale of µ0

s /(ρsu
2
0) and a length scale of µ0

s /(ρsu0), possibly weighed with 1/f2(d)
and 1/(−f(d))1/2, respectively; however, we shall not pursue this further here.

Rewriting (2.4) in the form u0 = (2g/9)ρsφ
n+1
0 r2

p(1 − δ)/µf reveals the influence
of δ and µf with all other parameters fixed. These particular parameters enter in
two ways: implicitly through the just mentioned constitutive relation, and explicitly
through the terms in (2.1d) accounting for the inertia and viscosity of the fluid phase.
They make their greatest impact through u0, which is related to balancing drag and
buoyancy with gravity; neglecting the terms proportional to δ and ν in (2.1d) leads to
C = H̃ = 0 in the dispersion relation (3.6), but this has been found to play a minor
role.

To conclude this subsection, we note that (3.6) can be evaluated in any travelling
wave frame. Nevertheless, it is worthwhile to identify specific travelling wave frames
which we will employ in the analyses described in the next subsections. In §3.3, we
will consider time-dependent, small-amplitude, one-dimensional waves of arbitrary λ
which have just started to grow because of an instability of the uniform state, and
examine the initial growth rates of transverse perturbations superimposed on them.
Here, a natural choice of ω will be the propagation velocity of the corresponding
linear one-dimensional wave. For example, if we consider the fastest growing one-
dimensional wave (corresponding to λ = λm), then we will choose ω to be the
propagation speed of this wave, ωm = Im(σm)/λm. Then, in this moving frame, the
eigenvalue for the one-dimensional wave becomes real, σ = Re(σm).

In §4, we will consider fully developed one-dimensional travelling waves of small
amplitude, which are possible only in the vicinity of the Hopf bifurcation point,
(λ0, ω0), and examine their stability to transverse perturbations. One can expect the
velocities and longitudinal wavelengths of these fully developed one-dimensional
waves to differ only slightly from those of a linear wave at λ = λ0. Therefore, to
leading order, we can set λ ≈ λ0 and ω ≈ ω0, which is the propagation velocity of the
linear wave at λ = λ0, cf. (3.9).

3.2. Two-dimensional perturbations of one-dimensional waves

We know from many previous investigations that the uniform state is most unstable
to vertical perturbations, and that this leads to plane travelling waves (Needham
& Merkin 1986; Göz 1993b). But until recently it has been quite unclear whether
(and why) the two-fluid model allows for a secondary instability, where these waves
become unstable to transverse perturbations (Hernández & Jiménez 1991; Göz 1995c,
Anderson et al. 1995; Glasser et al. 1996, 1997). We extend these works in that
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we investigate analytically the full two-fluid model with respect to two aspects:
we consider the behaviour of two-dimensional modes during the growth of the
most unstable one-dimensional mode, and we calculate the transverse stability of a
small-amplitude saturated one-dimensional wave train. This will lead to a thorough
comparison of gas- and liquid-fluidized beds in the weakly nonlinear regime near the
onset of the primary instability. In order to clarify our notation, we note that φ0 is
the voidage of the uniformly fluidized state, φ0 + φ1(z, t) is the vertically travelling
one-dimensional wave and φ0 +φ1(z, t) +φ(y, z, t) is the voidage profile including the
two-dimensional disturbance. The other variables are represented in a similar manner.

We linearize the equations (2.7), (2.8), (2.10) and (2.11) about a one-dimensional
solution of the type described above, separate the dependence of the perturbation on
the horizontal coordinate by an exponential factor,

(φ, p, vz, vy, uz, uy) = (ψ, q, u, w, η, ρ)eiky , (3.11)

and keep only those terms which are linear in the one-dimensional solution according
to (3.2). This leaves us with the following equation for the voidage:

FKψ = rψ = O(φ1), (3.12a)

with the modified linear part

Kψ = Aψ̈ + 2(C − Aω)ψ̇′ + (Aω2 − 2Cω + C −M)ψ′′ +Mk2ψ

+(E + J̃k2)ψ̇ + [D − Eω + (H̃ − J̃ω)k2]ψ′ − J̃ψ̇′′ + (J̃ω − H̃)ψ′′′. (3.12b)

and the right-hand side rψ given in Appendix B. We will set up similar equations for
the other variables (q, u, w, η, ρ) as well ((3.13)–(3.15) below). We will then represent the
variables (ψ, q, u, . . .) in terms of mixed modes and a transverse-only mode (according
to (3.18) below) and derive expressions for amplitudes of each of these modes. This will
then prepare us for the analysis of the growth rate of two-dimensional perturbations
presented in §§3.3 and 4.

Now, the other variables follow from the equations

(1− φ0)(q
′′ − k2q) = −Fψ̈ + 2Fωψ̇′ + k2G0ψ − (G0 + Fω2)ψ′′ + a1ψ

′

−(EF + c1k
2)ψ̇ + c1ψ̇

′′ − (c1ω + α1FH)ψ′′′ + rq , (3.13)

with rq = O(φ1) as given in Appendix B, and

F(1− φ0)(u̇− ωu′)− µu′′ + µk2u− B0(η − u)− ν1η
′′ + ν1k

2η

= b1 ψ − G0ψ
′ + µ1ψ̇

′ − µ2ψ
′′ − (1− φ0)q

′ + ru , (3.14a)

F(1− φ0)(ẇ − ωw′)− µw′′ + µk2w − B0(ρ− w)− ν1ρ
′′ + ν1k

2ρ

= ik
[
−G0ψ + µ1ψ̇ − µ2ψ

′ − (1− φ0)q
]

+ rw , (3.14b)

Fδφ0[η̇ + (1− ω)η′]− ν2η
′′ + ν2k

2η + B0(η − u)

= −bδ ψ −
ν2κ̄

φ0

[ψ̇ + (1− ω)ψ′]′ − φ0q
′ + rη, (3.15a)

Fδφ0[ρ̇+ (1− ω)ρ′]− ν2ρ
′′ + ν2k

2ρ+ B0(ρ− w)

= −ik

[
ν2κ̄

φ0

{ψ̇ + (1− ω)ψ′}+ φ0q

]
+ rρ. (3.15b)

The expressions for the r∗ = O(φ1) as well as the constants ai , i = 1, . . . , appearing
here and below will be given in Appendix B. Instead of evaluating (3.14a, b) and
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(3.15a, b), however, it is sometimes more convenient to use the linearizations of
(2.6a, b), leading to

(1− φ0)(ikw + u′) = ψ̇ − ωψ′ + r1, (3.16)

φ0(ikρ+ η′) = −ψ̇ − (1− ω)ψ′ + r2, (3.17)

because with these two relations the transverse velocity components w and ρ can be
eliminated easily from the leading-order contributions to rψ (cf. Appendix B. Here
we use (3.16), (3.17) instead of (3.14), (3.15b); for the asymptotic analysis in §4 we
shall use them instead of (3.14), (3.15a)). To proceed we now break down the above
expressions into their basic harmonic components.

As in Göz (1995c), we assume that the perturbation has the same wavelength and
travels at the same wave speed as the primary wave. Neglecting contributions from
higher harmonics, similar to the one-dimensional case, but including pure transverse
perturbations, the two-dimensional perturbations can be decomposed as

(ψ, q, u, . . .) = (ψ, q, u, . . .)+ eiλz + (ψ, q, u, . . .)− e−iλz + (ψ, q, u, . . .)0 + h.h. , (3.18)

where the first two terms on the right-hand side denote the mixed modes, the third
term is the pure transverse mode and h.h. means higher harmonics. Consequently, we
should also neglect higher-harmonic terms arising from the quasi-linear terms in rψ .
Inserting this into (3.12) yields the three equations

Aψ̈+ + a2ψ̇+ + a3ψ+ = F−1 rψ |exp(iλz)
= F−1 r+ , (3.19a)

Aψ̈− + ā2ψ̇− + ā3ψ− = F−1 rψ |exp(−iλz)
= F−1 r− , (3.19b)

Aψ̈0 + (E + J̃k2)ψ̇0 +Mk2ψ0 = F−1 rψ |
e0

= F−1 r0 , (3.19c)

where (cf. Appendix B)

r+ = φ+[γ1ψ0 + γ2ψ̇0 + γ3η0 + γ4u0 − k2q0 + O(φ+, φ−)] , (3.20a)

r− = r+(φ+ → φ− , γi → γ̄i) , (3.20b)

r0 = φ+[iλ(γ5η− − γ6u−) + γ7ψ̇− + γ̄8ψ− − k2q− + O(φ−)]

+φ−[−iλ(γ5η+ − γ6u+) + γ7ψ̇+ + γ8ψ+ − k2q+ + O(φ+)] . (3.20c)

The structure of these equations reveals clearly how the different modes interact with
each other. The pure transverse mode (ψ, q, u, . . .)0 strengthens or weakens the pair
of ‘mixed modes’ (ψ, q, u, . . .)±, and vice versa, by interaction with the primary mode
φ±. It is also seen that the longitudinal self-interaction becomes effective in the
higher-order terms only.

Moreover, (3.13) gives

q+ =
F

(1− φ0)(λ2 + k2)
ψ̈+ + a4ψ̇+ + a5ψ+ + O(φ+) , (3.21a)

q− =
F

(1− φ0)(λ2 + k2)
ψ̈− + ā4ψ̇− + ā5ψ− + O(φ−) , (3.21b)

(1− φ0)k
2 q0 = Fψ̈0 + (EF + c1k

2)ψ̇0 − G0k
2ψ0 − r0

q , (3.21c)

while (3.14) and (3.15) lead to

F(1− φ0)u̇+ + a61u+ − a62η+ = iλµ1ψ̇+ + a7ψ+ − iλ(1− φ0)q+ + O(φ+) , (3.22a)

F(1− φ0)ẇ+ + a61w+ − a62ρ+ = ik [µ1ψ̇+ − (G0 + iλµ2)ψ+]

−ik(1− φ0)q+ + O(φ+) , (3.22b)
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Fδφ0η̇+ + a8η+ − B0u+ =−iλν2

κ̄

φ0

ψ̇+ − a9ψ+ − iλφ0q+ + O(φ+), (3.23a)

Fδφ0ρ̇+ + a8ρ+ − B0w+ =−ik

[
ν2

κ̄

φ0

{ψ̇+ + iλ(1− ω)ψ+}+ φ0q+

]
+ O(φ+), (3.23b)

corresponding equations for u−, w−, η− and ρ−, and

F(1− φ0)u̇0 + (µk2 + B0)u0 − (B0 − ν1k
2)η0 = b1ψ0 + r0

u + O(φ+φ−), (3.24a)

F(1− φ0)ẇ0 + (µk2 + B0)w0 − (B0 − ν1k
2)ρ0

= ik [µ1ψ̇0 − G0ψ0 − (1− φ0)q0] + r0
w + O(φ+φ−), (3.24b)

Fδφ0η̇0 + (ν2k
2 + B0)η0 − B0u0 = −bδψ0 + r0

η + O(φ+φ−), (3.25a)

Fδφ0ρ̇0 + (ν2k
2 + B0)ρ0 − B0w0 = −ik

(
ν2

κ̄

φ0

ψ̇0 + φ0q0

)
+ r0

ρ + O(φ+φ−). (3.25b)

The higher-order terms like r0
u = O(φ+, φ−) follow from taking the average of ru

with respect to z. Note that except in the voidage equations (3.19), we have included
higher-order terms in the averaged equations only (those with the zero index denoting
the pure transverse modes), as it will turn out that we only need these. This means that
for relating pressure and velocity of the mixed modes to the voidage, the relationships
stemming from the linearization at the uniform state are sufficient, whereas we need to
look at higher-order contributions to determine the pure transverse modes. Evaluating
(3.16) and (3.17) leads to

(1− φ0)(ikw+ + iλu+) = ψ̇+ − iλωψ+ + ikφ+w0 + iλ(φ+u0 + v1+ψ0), (3.26a)

(1− φ0)ikw0 = ψ̇0 + ik(φ+w− + φ−w+) ; (3.26b)

φ0(ikρ+ + iλη+) = −ψ̇+ − iλ(1− ω)ψ+ − ikφ+ρ0 − iλ(φ+η0 + u1+ψ0) , (3.27a)

φ0ikρ0 = −ψ̇0 − ik(φ+ρ− + φ−ρ+) . (3.27b)

As noted earlier at the end of §3.2, there are two ways to proceed. First, we can
look at the evolution of the two-dimensional modes as a primary wave of arbitrary
longitudinal wavenumber λ grows. Owing to the nature of the above approximation,
this will be limited to small amplitudes of the one-dimensional wave and, hence, to
short times. Then we might even neglect the time-dependence of the one-dimensional
wave and approximate the initial development of the perturbation modes by an
eigenvalue problem. (Another way to view this approach is to say that we analyse the
stability of the growing one-dimensional wave via a quasi-steady-state approximation,
where we fix its time-dependent amplitude at various stages.) This will be carried
out in the next subsection, where we will study the dependence of the initial (i.e. for
small time intervals) two-dimensional growth rates on the amplitude of the growing
one-dimensional wave and the lateral wavenumber for the two fluidized beds under
consideration. Second, we can use the above equations to investigate the stability
of a fully developed small-amplitude one-dimensional travelling wave. In this case
we have to put σ = 0 everywhere, which leads to a singularity for small transverse
wavenumbers. This singularity indicates that the transverse variables act on a scale
of the order of the square root of the one-dimensional amplitude; the appropriate
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rescaling performed in §4 leads to the proof of the presence of a long-wave secondary
instability.

3.3. Initial secondary growth rates

In principle, equations (3.19)–(3.25) constitute the dynamical system controlling the
initial growth of one- and two-dimensional modes. It is far too large, however, and
should be simplified further, preferably to a system like (3.19) but for the voidage
variables only by eliminating (most of) the other variables. To achieve this, we
employ the following trick. From (3.19a) we observe that to leading order ψ̈+ can be
expressed as a linear function of ψ+ and ψ̇+. Insertion into (3.21a) gives q+ in terms
of ψ+ and ψ̇+, plus higher-order corrections which we may neglect. Then (3.22a)
and (3.23a) suggest that u+ and η+ may also be expressed in first approximation as
linear combinations of the ‘basis functions’ ψ+ and ψ̇+, thereby neglecting damped
homogeneous solutions to these equations. Therefore we propose

(q+, u+, η+) = (c+
q , c

+
u , c

+
η ) ψ̇+ + (c̃+

q , c̃
+
u , c̃

+
η )ψ+ + O(φ±) , (3.28)

and similarly for the variables with the minus or zero index†. The constant coefficients
can be found in Appendix C. The results are then used to remove the pressure and
velocity variables from (3.20), so that we finally end up with three second-order
non-autonomous but linear equations for the voidage variables:

Aψ̈+ + a2ψ̇+ + a3ψ+ = θ1φ+ψ̇0 + θ2φ+ψ0 , (3.29a)

Aψ̈− + ā2ψ̇− + ā3ψ− = θ̄1φ−ψ̇0 + θ̄2φ−ψ0 , (3.29b)

Aψ̈0 + (E + J̃k2)ψ̇0 +Mk2ψ0 = θ3φ−ψ̇+ + θ̄3φ+ψ̇− + θ4φ−ψ+ + θ̄4φ+ψ−, (3.29c)

where higher-order terms (quadratic in φ± or stemming from higher harmonics) have
been omitted. The constants θi are given in Appendix C.

Let us now consider a one-dimensional travelling wave corresponding to the fastest
growing mode (i.e. λ = λm). A fully developed travelling wave of this wavenumber
will, in general, not have a small amplitude, so we must consider a growing one-
dimensional wave at a stage when its amplitude is small (if we wish to use (3.29)).
Therefore we will set φ+ = vp exp(σt) as in (3.3) where vp denotes the current amplitude
(the current time being taken to be t = 0 without loss of generality) and σ is the
maximum growth rate of the primary instability (=Re(σm), cf. table 2). Although
(3.29) can now be solved numerically, we will restrict our attention to the simpler
problem of estimating the initial growth rate of the two-dimensional perturbation by
simply setting φ in these equations equal to vp. This approximation reduces (3.29)

† We remark that it is indeed acceptable to neglect the contributions from the homogeneous
solutions to (3.22a) and (3.23a) (the ± velocity modes), because these are strongly damped. More
precisely, their decay rate is of the order of −λ2

0, and we consider λ0 as being of order one. This
is less clear with regard to the homogeneous solutions of (3.24a), (3.25a) as the decay rate of
these zero-index modes, representing vertical velocity components with transverse-only structure,
is of the order of −k2, which may be small. We shall see in the next section that the modes
with small transverse wavenumber drive the secondary instability and thereby the presence of a
transverse contribution to the vertical velocity may play a role. Although discarding this pure
velocity perturbation mode in (3.29) can be somewhat misleading, the essential features of the
secondary modes can already be detected by ignoring possibly amplifying terms like φ+u

0
0 exp(σ0t)

in (3.29a). Here, σ0 ∼ −k2, while u0
0 represents an initial perturbation of the vertical (fluid) velocity

in the horizontal direction; hence, leaving out such terms amounts to disallowing the corresponding
perturbations. In order to get a relation between u0

0 and the voidage modes ψ±,0 one has to consider
higher-order terms; we spare us and the reader this here but shall have to address it in the rescaled
analysis of the next section.
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Figure 2. Dimensionless initial secondary growth rates according to the approximation (3.29) for a
water-fluidized bed with φc = 0.424 (see tables 1 and 2). The values of vp are 0 (—), 7× 10−7 (– – –),
1.4× 10−6 (– - –), 2× 10−6 (- - -).

to an eigenvalue problem and enables us to compare the initial growth rates of the
primary and secondary disturbances. Strictly speaking, the rate of amplification of
disturbances calculated through such an eigenvalue problem may have no relevance
to the long-time behaviour (Wang, Jackson & Sundaresan 1996). Nevertheless it
does serve two useful purposes for the present study. First, it reveals that the initial
growth rate of the secondary instability is affected by the amplitude of the primary
one-dimensional wave in a more profound manner in the case of a liquid-fluidized
bed than in the case of a gas-fluidized bed. Secondly, it exposes the occurrence of a
singularity at k = 0 in the case of fully developed (i.e. σ = 0) small-amplitude waves
which occur in the vicinity of λ0 and points to the need for a rescaled analysis.

The outcome of such an eigenvalue calculation is illustrated in figure 2 for the
water-fluidized bed in table 1, where φc is taken to be 0.424 (see first row in table 2
under water-fluidized bed). For various assumed values of one-dimensional amplitude
vp and transverse wavenumber k, we have determined the six eigenvalues by solving
(3.29). The real parts of the two leading eigenvalues are plotted in figure 2 as a
function of k, for several different values of vp; also shown in this figure is the next
largest eigenvalue, which is real and negative for all k, and decreases with increasing
vp. For vp = 0, the two leading eigenvalues appear as a complex-conjugate pair for
all values of k, and their real part is shown in figure 2 as a solid line. The mixed
modes represented by these eigenvalues are stable for large values of k, but become
unstable as k is decreased sufficiently. As k is decreased further, the real part of the
eigenvalues becomes virtually independent of k. The growth rate in this plateau region
is virtually the same as that of the primary instability away from the uniform state.
For non-zero values of vp, the two leading eigenvalues appear as a complex-conjugate
pair for large k values; however, as k is decreased they split into two real eigenvalues.
It is clear from figure 2 that this splitting occurs at a higher and higher k value
as vp is increased. As k is decreased, one of the real eigenvalues decreases towards
the plateau corresponding to vp = 0, while the other eigenvalue increases towards
a different plateau. The growth rate in this latter plateau increases as vp increases,
so the secondary mode corresponding to this eigenvalue grows much faster than the
primary wave once the latter has reached an amplitude of the order of 10−6.

Repeating this analysis for various values of φc revealed that the stronger the
primary instability (i.e. the larger the magnitude of φ0 − φc resp. the smaller g0) is,
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Figure 3. Dimensionless initial secondary growth rates according to the approximation (3.29) for
an air-fluidized bed with φc = 0.424 (see tables 1 and 2). The values of vp are 0 (—), 8×10−4 (– – –),
1.5× 10−3 (- - -), 2.5× 10−2 (– – –), 5× 10−2 (– - –).

the larger is the order of magnitude of vp at which the secondary mode grows much
faster than the primary mode.

A similar analysis for the case of a gas-fluidized bed is illustrated in figure 3 for
the same φc of 0.424 (see table 2). The solid lines in figure 3 indicate the real part
of the dominant complex-conjugate eigenvalue pair and the next largest eigenvalue
(which happens to be real and corresponds to a transverse mode) for the case vp = 0.
As in the case of liquid-fluidized beds, the growth rate of the dominant eigenvalue
is negative for large k, turns positive as k is decreased and becomes independent of
k for sufficiently small k. Once again, for non-zero values of vp, the two dominant
eigenvalues appear as a complex conjugate pair for large k, and split into two
real eigenvalues as k is decreased (e.g. see point A in figure 3). As k is decreased
further, one of these two real eigenvalues increases towards the plateau corresponding
to vp = 0, while the other real eigenvalue decreases towards a different plateau.
Simultaneously, the next largest eigenvalue increases as well. These are clearly seen
in the curves corresponding to vp = 0.0008. As the value of vp is increased further (to
0.0015), the second and third real eigenvalue branches collide (as illustrated by point
B in figure 3) and become a complex-conjugate pair for small k values. Focusing
on this complex-conjugate pair at small k values, one finds that its growth rate
continues to increase as vp is increased. When vp = 0.06, these secondary modes grow
much faster than the primary wave. We have repeated this analysis for different
values of φc and found the same trend as in the case of water-fluidized beds, i.e. as
(φ0−φc) increases, both the maximum growth rate of the primary instability and the
typical value of vp needed for the secondary mode to overwhelm the primary mode
increase.

Comparing figures 2 and 3, it is apparent that the order of magnitude values of vp
at which the primary wave has an appreciable effect on the growth of the secondary
modes are vastly different for the gas- and liquid-fluidized beds under consideration.
This effect can also be worked out analytically. The six eigenvalues of (3.29) with
constant φ± (= vp) can be represented as a power series in v2

p; for vp = 0, the dominant

eigenvalue belongs to the mixed modes, is a complex O(k2) perturbation of σ (primary
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instability) and is given by the solution with positive real part of

Aτ2
0 + a2τ0 + a3 = 0, i.e. τ0 = σ − O(k2). (3.30)

The other solution of (3.30) has negative real part. (Note that (3.30) follows from
(3.29a) with φ+ = vp = 0.) The complex-conjugate eigenvalues of these two are
obtained as solutions of the equation with complex-conjugate coefficients that follows
from (3.29b) with φ− = vp = 0. The remaining two eigenvalues follow in the same
way from (3.29c), hence are real (and belong to transverse modes); one is of order
−k2, the other is strongly negative. The expansion for the dominant eigenvalue in
terms of vp starts as

τ = τ0 + τ2v
2
p + τ4v

4
p + O(v6

p), τ2 =
(θ1τ0 + θ2)(θ3τ0 + θ4)

(2Aτ0 + a2)[Aτ
2
0 + (E + J̃k2)τ0 +Mk2]

, (3.31)

and similarly for the complex-conjugate eigenvalue (the expression for τ4 is too
lengthy to be presented here but can easily be calculated with Mathematica). This
approximation is valid as long as the contribution from the v2

p term is much smaller
than τ0; since this applies to both the real and imaginary parts of τ, the expansion
will certainly fail when the split of the complex-conjugate eigenvalues into a pair of
real eigenvalues occurs. Defining a critical vp, v

c
p, for which |Re(τ2)|(vcp)2 ∼ |Re(τ0)|, we

find that for the water-fluidized bed vcp ∼ O(10−6) to O(10−4) depending on the choice

of φc, while for the air-fluidized bed vcp ∼ O(10−3) to O(10−1). These are comparable
to the values found numerically (figures 2 and 3). (As figure 3 reveals that in the case
of the air-fluidized bed one of the transverse modes (tm) is growing instead of the
mixed mode and since the eigenvalue of the transverse mode starts with τtm0 = O(−k2)
as k → 0, it is more reasonable to compare in this case τtm4 with τtm2 to estimate vcp.
We simply note that this leads to the same estimate for vcp as noted above for the
air-fluidized bed.)

Although the approximation (3.29) breaks down for much smaller one-dimensional
amplitudes in the case of water-fluidized beds than air-fluidized beds, it does not
mean that the approximation also becomes invalid earlier in time; in fact the opposite
is true, because the primary waves grow so much faster in the air-fluidized bed and
thus reach the critical amplitude in shorter time. We shall discuss this point further in
§5 after finishing the rescaled stability analysis of a fully developed small-amplitude
one-dimensional wavetrain.

In the derivation of (3.29) and the subsequent analysis described in this section,
we have treated the vertical wavenumber, λ, as arbitrary. The amplitude of a fully
developed one-dimensional wave corresponding to the chosen value of λ may be
large, thereby rendering the approximation leading to (3.29) invalid. The requirement
of a small-amplitude one-dimensional wave, coupled with our desire to leave λ ar-
bitrary, led to time-dependent φ± on the right-hand side of (3.29). We then made
a gross simplification by neglecting the time-dependence of φ± to extract an eigen-
value problem. This last simplification can be eliminated altogether if we insist that
the one-dimensional wavetrain be fully developed. If we demand this, the vertical
wavenumber can no longer be left arbitrary. Fully developed, small amplitude one-
dimensional wavetrains can be obtained only in the vicinity of vertical wavenumber
λ0 (and corresponding wave velocity ω0) satisfying (3.10). When we do examine the
consequences of such fully developed, small amplitude one-dimensional wavetrains on
the growth rates of secondary modes, a need for re-scaling the problem surfaces. This
can be seen by putting σ = 0 not only in the exponential factor on the right-hand
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side of (3.29) but also in the coefficients θi, and examining the outcome on (3.30) and
(3.31). Then τ0 = −O(k2), so that

τ2 ∼
(θ2θ4)

0

a0
2 k

2
+ O(1), k2 � 1, (3.32)

because θ1,2 ∼ 1/k2 while θ3,4 ∼ k2 as k → 0; the superscript zero means evaluation
at k = 0. The singularity in (3.32) signals that for long-wave perturbations of fully-
developed one-dimensional waves, (3.31) becomes invalid in the sense that we cannot
consider vp being small and k a quantity of order one; instead we have to relate
the two. How this has to be done can be readily inferred from (3.31), (3.32): the
perturbation term ∼ v2

p/k
2 becomes of the same order as the leading-order term ∼ k2

if k2 ∼ vp; correspondingly the eigenvalue scales then as τ ∼ vp. It turns out that this
procedure involves a rescaling of other variables too, so that we have to retreat one
step from (3.29) and work with the equations (3.19)–(3.27). The details of the rescaled
analysis will be presented in the next section.

4. Asymptotic analysis
We now consider the stability of a fully developed small-amplitude one-dimensional

wavetrain by analysing the equations (3.19)–(3.27), together with (3.3)–(3.5), for σ = 0
and φ+ = φ− = ε. We will first describe the necessary rescaling and then derive a
dispersion relation, (4.13), for the eigenvalues of the two-dimensional perturbations.
We will then describe how the four eigenvalues which can be obtained from the
dispersion relation vary with the transverse wavenumber for typical air- and water-
fluidized beds. It is sufficient to approximate ω and λ by ω0 and λ0 characterizing
the onset of the one-dimensional periodic solutions (see (3.9)), since the deviations
are of order ε2 and will not enter the calculations. In addition, we may assume ψ+ =
ψ̃+ exp (τt), and similarly for the other variables, with the eigenvalue τ determining
the stability of the one-dimensional wave to two-dimensional perturbations of the
same longitudinal wavelength and velocity. Hence (3.19a) becomes

F(Aτ2 + a2τ+ a3)ψ̃+ = ε[(γ1 + τγ2)ψ̃0 + γ3η̃0 + γ4ũ0 − k2q̃0] + O(ε2) , (4.1)

where now a3 ∼ k2 due to (3.9), cf. (B 1). It is easily seen that Re (τ) < 0, if k2 = O(1)
and ε� 1. However, an instability occurs for long waves as has been shown previously
for δ = ν = 0. Following the same line of reasoning, we scale the wavenumber with

the square root of the amplitude of the one-dimensional wave, i.e. k2 = εk̂2, upon
which the eigenvalue scales with the amplitude itself: τ = ετ̂. For consistency we then
have to scale the horizontal velocities with ε1/2, too: (w, ρ) = ε1/2(ŵ, ρ̂). In addition
we shall see that ψ̃0 and q̃0 are of order ε. One argument comes directly from the
rescaled version of (3.19c), which yields

F(Mk̂2 + Eτ̂)ψ̃0 = γ0
8ψ̃− + γ̄0

8ψ̃+ + iλ[γ0
5(η̃− − η̃+)− γ0

6(ũ− − ũ+)] + O(ε), (4.2)

where the zero superscript on the coefficients denotes their O(1)-approximation. But
the O(1)-approximations to (3.26a) and (3.27a) read

(1− φ0)ũ+ = −ωψ̃+ , φ0η̃+ = −(1− ω)ψ̃+ , (4.3)

and the same relations hold for the variables with the minus index. Note that these
relations correspond exactly to those for the one-dimensional solution, cf. (3.4b, c) for
σ = 0. Inserting (4.3) into (4.2) and observing (A 8) and (A 10) shows immediately that
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the O(1)-contribution to the right-hand side of (4.2) vanishes, so that either τ̂ 6 0 or
ψ̃0 = εψ̂0 with ψ̂0 = O(1). The latter is confirmed by looking at the rescaled versions
of (3.24a), (3.25a), which give

B0(ũ0 − η̃0) = b1ψ̃0 + O(ε) = bδψ̃0 + O(ε)⇒ ψ̃0 = O(ε), ũ0 = η̃0 + O(ε). (4.4)

Moreover, because (3.21c) becomes

(1− φ0)k̂
2 q̃0 = (EFτ̂− G0k̂

2)ψ̃0 + O(ε), (4.5)

we have also that q̃0 = εq̂0. Implementing all these scalings into (4.1), its lowest-order
approximation becomes

F(a0
2τ̂+ a3|k2 k̂2) ψ̃+ = (γ0

3 + γ0
4)ũ0 ,

which can be simplified to (
τ̂+

a3|k2

a0
2

k̂2

)
ψ̃+ = −iλũ0 (4.6a)

upon observing that γ0
3 + γ0

4 = −iλF a0
2. Similarly,(

τ̂+
ā3|k2

ā0
2

k̂2

)
ψ̃− = iλũ0 (4.6b)

holds for ψ̃−, so that we need only one other equation for ũ0.
It can be concluded from (3.26b) and (3.27b) that ŵ0 and ρ̂0 are of the same order

as ψ̃0, i.e. they also scale with an additional factor of ε. Therefore, the leading-order
approximation to the perturbation variables consists of mixed modes (ψ, q, u, w, η, ρ)±
and of pure transverse contributions to the vertical velocities u0, η0, which are moreover
equal up to terms of the order of the amplitude of the one-dimensional wavetrain.
Furthermore, the eigenvalue scales with the amplitude, and the critical transverse
wavenumber as well as the transverse velocities scale with the square root of the
amplitude.

In order to derive an equation correlating ũ0 with ψ̃±, we have to consider higher-
order contributions to the equations for the pure transverse modes. At O(ε2), (3.21c)
gives

(1− φ0)k̂
2 q̂0 = (EFτ̂− G0k̂

2)ψ̂0 − r0
q|ε2 , (4.7a)

with

−r0
q|ε2 = FEφ0ik̂(ŵ+ + ŵ−) + FE(1− φ0)ik̂(ρ̂+ + ρ̂−)

−B′0ik̂(ρ̂+ + ρ̂− − ŵ+ − ŵ−)− k̂2G′0(ψ̃+ + ψ̃−) + k̂2(q̃+ + q̃−)

−α1νµλik̂[λ(ρ̂+ + ρ̂−) + κ̄k̂(η̃+ − η̃−)]. (4.7b)

Another relation comes from the scaled versions of (3.24a) and (3.25a):

ε {[F(1− φ0)τ̂+ µk̂2]ũ0 + ν1k̂
2η̃0}+ B0(ũ0 − η̃0) = ε(b1ψ̂0 + rz031|ε) + O(ε2) ,

ε[Fδφ0τ̂+ ν2k̂
2]η̃0 − B0(ũ0 − η̃0) = ε(−bδψ̂0 + rz041|ε) + O(ε2) .

Adding these two equations to eliminate possible O(ε)-contributions to ũ0− η̃0, and
setting then ũ0 = η̃0 according to (4.4) leaves us with the O(ε)-approximation

[F(1− φ0 + δφ0)τ̂+ (µ+ ν1 + ν2)k̂
2] ũ0

= (1− δ)ψ̂0 + 2(α2 − α1)νµ
1 + κ̄

φ0

(1− ω)λ2(ψ̃+ + ψ̃−), (4.8)
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since most of the other terms cancel each other, partially due to (4.3). Notice that
the last term vanishes, if α1 = α2. A third relation is obtained by combining (3.24b)
with (3.25b). Writing ŵ0 = εw̌0, ρ̂0 = ερ̌0 according to the above results, we get the
leading-order relations

B0(ρ̌0 − w̌0) = ik̂[G0ψ̂0 + (1− φ0)q̂0]− ry0
3 |ε3/2 = −ik̂φ0q̂0 + r

y0
4 |ε3/2 ,

from which another relation between ψ̂0 and q̂0 follows, namely

ik̂(G0ψ̂0 + q̂0) = −ik̂G′0(ψ̃+ + ψ̃−) + (α1 − α2)νµλ[λ(ρ̂+ + ρ̂−) + κ̄k̂(η̃+ − η̃−)] . (4.9)

Eliminating q̂0 from (4.7) and (4.9) gives us the following expression for ψ̂0:

F(Eτ̂+Mk̂2) ψ̂0 = −FEik̂[φ0(ŵ+ + ŵ−) + (1− φ0)(ρ̂+ + ρ̂−)]

+B′0ik̂(ρ̂+ + ρ̂− − ŵ+ − ŵ−) + k̂2φ0G
′
0(ψ̃+ + ψ̃−)− k̂2(q̃+ + q̃−)

+ν3λ [ik̂λ(ρ̂+ + ρ̂−) + iκ̄k̂2(η̃+ − η̃−)]. (4.10)

Inserting this into (4.8) yields the desired relation between ũ0 and the mixed-mode
variables. Finally, using the leading-order approximations to (3.21a), (3.22b) and
(3.23b),

q̃+ = a0
5ψ̃+ , (4.11a)

a0
61ŵ+ − a0

62ρ̂+ = −ik̂ [(G0 + iλµ2) ψ̃+ + (1− φ0)q̃+] , (4.11b)

a0
8ρ̂+ − B0ŵ+ = −ik̂

[
iλ(1− ω)ν2

κ̄

φ0

ψ̃+ + φ0q̃+

]
, (4.11c)

allows us to express q̃±, ŵ±, and ρ̂± in terms of ψ̃±. Thus (4.8) becomes

F(Eτ̂+Mk̂2)[F(1− φ0 + δφ0)τ̂+ (µ+ ν1 + ν2)k̂
2] ũ0 = (1− δ)k̂2(χψ̃+ + χ̄ψ̃−)

+2(α2 − α1)νµ
1 + κ̄

φ0

(1− ω)λ2F(Eτ̂+Mk̂2)(ψ̃+ + ψ̃−) , (4.12)

with the complex coefficient χ being defined in Appendix D. The condition for the
existence of a non-trivial solution of equations (4.6a, b) and (4.12) for ψ̃± and ũ0 leads
to the somewhat cumbersome dispersion relation

FE(τ̂+ ξ1k̂
2)(τ̂+ µ̃k̂2)[τ̂+ (ξ2 + iξ3)k̂

2][τ̂+ (ξ2 − iξ3)k̂
2]

=
2(1− δ)λ

F(1− φ0 + δφ0)
k̂2
[
ξ5τ̂+ (ξ2ξ5 − ξ3ξ4)k̂

2
]

+(α1 − α2)
4λ3ξ3νµ(1 + κ̄)(1− ω)FE

Fφ0(1− φ0 + δφ0)
k̂2(τ̂+ ξ1k̂

2) . (4.13)

Here we have set

ξ1 =
M

E
, µ̃ =

µ+ ν1 + ν2

F(1− φ0 + δφ0)
, χ = ξ4 + iξ5,

ξ2 + iξ3 =
a3|k2

a0
2

=
M + iλ(H̃ − J̃ω)

E + J̃λ2 + 2iλ(C − Aω)
,

 (4.14)

so that all parameters ξi are real quantities. Note that the last contribution to (4.13)
vanishes whenever α1 = α2, and that non-vanishing values of α1,2 as well as a variable
viscosity of the particle phase have minor effects only, since their contributions appear
only in the coefficients entering the relation (4.13) but do not alter its form which is
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in complete analogy to the case δ = ν = 0 (Göz 1995c). As in that paper we may

therefore conclude that the largest eigenvalue τ̂1 is real and positive for small k̂ and
starts from the origin like

τ̂1 = Ak̂2/3 + Bk̂2 + Ck̂10/3 + O(k̂14/3) , (4.15)

where

A = (χ5)
1/3, χ5 =

1− δ
FE

2λξ5

F[1− φ0(1− δ)]
,

B =
χ6 − χ1A

3

4A3 − χ5

, C = −A2 χ2 + 3χ1B + 6B2

4A3 − χ5

.

 (4.16)

The origin of and expressions for the χi are given in Appendix D. The next largest

eigenvalue is also real for small k̂ and is given by

τ̂2 = −(χ6/χ5)k̂
2 + O(k̂6) (k̂ � 1) , χ6/χ5 = (ξ2ξ5 − ξ3ξ4)/ξ5. (4.17)

If χ6 < 0, τ̂2 is positive for small k̂ and will merge with τ̂1 at a point above the axis

Re(τ̂) = 0 to form a complex-conjugate pair. If χ6 > 0, τ̂2 falls off from 0 at k̂ = 0
but may rise again to merge with τ̂1 above or below the axis Re(τ̂) = 0; in the former
case τ̂2 crosses the axis at a wavenumber given by

k̂4
c = χ6/χ4 ∼ ξ2ξ5 − ξ3ξ4 (4.18)

(this requires χ6 > 0 because χ4 is always positive). If the second branch stays below

the axis, the leading eigenvalue will be real and positive in the interval k̂ ∈ (0, k̂c), so

that stabilization occurs at the critical wavenumber k̂c.
The small-k̂ behaviour of the two remaining eigenvalues is given by

τ̂3,4 = (−1± i
√

3)(χ5)
1/3k̂2/3/2 + O(k̂2) (k̂ � 1); (4.19)

they have negative real parts for all k̂. Ultimately all eigenvalues must stabilize,
because the short-wave analysis of (4.13) shows that their asymptotic behaviour is
given by

τ̂(1,2,3,4) ∼ (−ξ1,−µ̃,−ξ2 ∓ iξ3)k̂
2 (k̂ � 1). (4.20)

At intermediate values of k̂, these four eigenvalues interact in a variety of ways, and
we will not attempt to enumerate them. Instead, we present two specific examples
corresponding to an air-fluidized bed (figure 4) and a water-fluidized bed (figure 5),
both with φc = 0.424 (see tables 1 and 2). In figure 4, the dominant eigenvalue is

real. The next largest eigenvalue is also real for small k̂, while the other two form
a complex-conjugate pair (only the real part of this pair is shown). In this example,
there is no interaction between the largest and the three other eigenvalues; such
interactions do occur for other values of φc and/or when a variable bulk modulus,
G′0 6= 0, is taken into account.

In the water-fluidized bed example, figure 5, the two leading real eigenvalues (τ̂1

and τ̂2) interact to produce a complex-conjugate pair. On the other hand, the initially
complex-conjugate pair (τ̂3 and τ̂4) split into a pair of real eigenvalues, one of which
rapidly falls off to −∞, while the other increases towards the two leading eigenvalues
before decreasing again, after some interaction.

It is revealing to compare figures 4 and 5. These figures provide us with the growth
rates of two-dimensional perturbations of plane vertically travelling fully developed
waves near their onset and we have to keep in mind that this growth rate and
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Figure 4. Dimensional secondary growth rates, scaled with the amplitude, vs. the scaled transverse
wavenumber for an air-fluidized bed with φc = 0.424 (see tables 1 and 2). The real parts of the four

eigenvalues τ̂1,2,3,4 obtained by solving (4.13) are plotted against k̂.
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Figure 5. Dimensional secondary growth rates Re(τ̂1,2,3,4), scaled with the amplitude, vs. the scaled

transverse wavenumber k̂ for a water-fluidized bed with φc = 0.424 (see tables 1 and 2).

square of the transverse wavenumber have been scaled with the amplitude of the one-
dimensional wave. One can readily see from these figures that for a given amplitude
of the one-dimensional wave the difference in the dimensional growth rates of air-
and water-fluidized beds is much smaller than that in the primary growth rates.

5. Discussion
We have examined in this paper the primary and secondary instabilities in air-

and water-fluidized beds for various parameter values. The overall tendency is that
the primary growth rates are vastly different while the amplitude-related secondary
growth rates are roughly comparable. We have shown that the growth rate of the
primary instability scales as ρsu

2
0/µ

0
s , which explains the differences observed between

these two beds.
The Froude number appearing in the model equations is in terms of quantities

which can be directly measured; in contrast, the Reynolds number involves particle-
phase viscosity, µ0

s , and there is some uncertainty in our ability to estimate its value.
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In their analysis of the dynamics of air- and water-fluidized beds of glass beads,
Anderson et al. (1995) assumed the particle-phase viscosities of the two beds to be
equal. In that case, then, our finding shows that the growth rates of the two beds will
differ by a factor determined by the square of the fluidization velocity. This is indeed
confirmed by numerical calculations. Writing R = (ρsrp/µ

0
s )(grpF)1/2, we see that for

both the air- and water-fluidized beds listed in table 1, R = 0.019F1/2.

5.1. Scaling behaviour of the secondary growth rates

In order to bring forth the dependence of the growth rate of the secondary instability
on R and, particularly, F , let us consider the specific example of φ0 = 0.43, φc = 0.424,
n = 3, δ = ν = 0. Then the kinematic wave velocity d appearing in (3.7) is 2.85, and
the dynamic wave velocity of the travelling wave emerging from the uniform solution
at the Hopf bifurcation point is ω0 = 2.7226; both are measured in terms of the
fluidization velocity u0 (which is determined implicitly by (2.4)). Now consider fully
developed small-amplitude (ε), one-dimensional vertically travelling wave solutions
and their stability to transverse perturbations. The largest dimensionless eigenvalue,

τ1 = ετ̂1, for small dimensionless lateral wavenumber, k = ε1/2k̂, is given by the
solution with largest real part of the dispersion relation (4.13). While it is virtually
impossible to determine the maximum of the growth rate, τ̂max , analytically, we may

obtain an estimate of it by considering the small-k̂ expansion (4.15):

τ̂1 = Ak̂2/3 + Bk̂2 + Ck̂10/3 + O(k̂14/3) .

Considering only the first two terms of this expansion, we can readily estimate the

value k̂0
m at which the maximum growth rate occurs and also find its magnitude, τ̂0

m,
namely

k̂0
m =

(
− A

3B

)3/4

, τ̂0
m = 2

3
A

(
− A

3B

)1/2

. (5.1)

Obviously this is valid only if B is negative (A is positive here), which is found to be
true in our cases. We could repeat the exercise including the third term in the above
expansion to find the conditions

(k̂±m )4/3 = (−3B ± (9B2 − 20AC)1/2)/(10C) > 0, 9B2 − 20AC > 0, (5.2)

from which τ̂±m would follow. The inequality conditions in (5.2), however, are not
always satisfied and therefore the seemingly better approximation less useful. In the
air-fluidized bed example (table 1) for which C < 0, (5.1) was found to be a very good

approximation for both k̂0
m and τ̂0

m; in contrast, in the water-fluidized bed example for
which C > 0, (5.1) proved to be a good estimate of the maximum growth rate τ̂0

m, but

not k̂0
m (this has to do with the range of validity of the small-k̂ expansion of τ̂1, cf.

figures 4 and 5). This observation led us to view (5.1b) as an acceptable approximation
for the maximum secondary growth rate and examine the dependence of A and B
on the model parameters R and F . The full expressions for the expansion coefficients
and growth rates are unwieldy but one can easily derive asymptotic expressions. For
small Froude number we get

A = 4.634/F1/3 − 34.09RF2/3 + 1072.7R2F5/3 − . . . ,
B = −0.585/R − 2.745F + 12.12RF2 − . . . ,
k̂0
m = 2.072R3/4/F1/4 − 18.73R7/4F3/4 + . . . ,

τ̂0
m = 5.021 (R/F)1/2 − 67.19R3/2F1/2 + 2069R5/2F3/2 − . . . ;

 (5.3)
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and in the limit of large Froude number

A = 3.502/F1/3 + 0.039/(RF4/3)− 0.0015/(R2F7/3) + . . . ,

B = −1.063F − 3.762/R + 10.1/(FR2)− . . . ,
k̂0
m = 1.073/F − 2.841/(RF2) + 16.46/(R2F3) + . . . ,

τ̂0
m = 2.447/F − 4.291/(RF2) + 23/(R2F3)− . . . .

 (5.4)

Note that the leading-order terms in (5.4) are independent of the Reynolds number.
The above are dimensionless expressions; to get the dimensional growth rates, τ̂1

etc. has to be multiplied by u0/rp = (Fg/rp)
1/2. If we now assume the particle-phase

viscosity to be a constant so that R ∼ F1/2, and examine the asymptotic behaviour
for small and large Froude number, the leading-order dimensional terms are found
to scale as follows:

Ad ∼ F1/6, Bd ∼ −O(1), k̂0
m ∼ F1/8, τ̂0

m,d ∼ F1/4 (F � 1); (5.5)

Ad ∼ F1/6, Bd ∼ −F3/2, k̂0
m ∼ F−1, τ̂0

m,d ∼ F−1/2 (F � 1). (5.6)

We see that the dependence on F is especially weak for small Froude number, and that
the same is true for the initial rise of the growth rate with the wavenumber (described
by the coefficient Ad) in the limit of large F . Note that the growth rate of the secondary
instability increases with Froude number (only weakly) when F � 1, but it reverses the
trend when F � 1. (The same trend holds for the lateral wavenumber corresponding
to the maximum growth rate.) This should be contrasted with the primary growth
rate which increases with F as long as the approximation (3.10) is valid.

A surprisingly good approximation of τ̂0
m,d is obtained by patching together the

leading-order terms for small and large Froude numbers in the following way:

τ̂−1
as = τ̂−1

s1 + τ̂−1
l1 , (5.7)

where τ̂s1 = 5.021(g/rp)
1/2R1/2, τ̂l1 = 2.447(g/rp)

1/2F−1/2. See figure 6. This figure also
shows that the (approximate) dimensional secondary growth rates differ at most by
a factor of 10 for Froude numbers between 10−4 and 102, say. For the air- and
water-fluidized bed examples in table 1, the values of τ̂0

m,d are 91.1 s−1 and 40.5 s−1,
respectively, very close to the exact values, cf. figures 4 and 5. Now that we found the
leading-order terms of A, B and τ̂0

m to give reliable approximations it is worthwhile
to calculate their general forms for δ = ν = 0:

A =

[
2d(d− ω0 + φ0)

2

(d− ω0)φ0(1− φ0)2

]1/3

F−1/3 + . . . ,

B = − 1

3(1− φ0)R
− . . . for F � 1,

 (5.8)

and

A =

[
2
ω0φ0 + (d+ φ0)(d− ω0 + φ0)

φ0(1− φ0)2

]1/3

F−1/3 + . . .

B = −(ω2
0φ0/3)F + . . . for F � 1,

 (5.9)

from which τ̂0
m can be obtained via (5.1).

5.2. Comparison of primary and secondary growth rates

Let us recall from §3.1 that the dimensionless maximum primary growth rate for
weakly unstable beds scales with the Reynolds number, σm ∼ R. Using the asymptotic
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Figure 6. Dimensional maximum growth rate τ̂0
m,d based on (5.1) vs. the Froude number (solid

curve), and its inverse-mean approximation (5.7) by the first-order asymptotic terms for small and
large Froude number (broken curve).

expressions for the growth rate of the secondary instability (τm = ετ̂m with τ̂m ≈ τ̂0
m

given by (5.3) and (5.4)),

τm

σm
∼
{
ε(RF)−1/2 for F � 1
ε(RF)−1 for F � 1.

(5.10)

One can extract from these expressions a scale for the amplitude of the one-
dimensional wave for which τm ∼ σm:

εcm ∼
{

0.001747 (RF)1/2, F � 1
0.003585RF, F � 1.

(5.11)

One can therefore expect that the secondary instability will set in at very small
amplitudes in liquid-fluidized beds, while in gas-fluidized beds the one-dimensional
wave has to grow to a much larger amplitude before the secondary instability will take
over. This was indeed seen in the numerical simulations of Anderson et al. (1995),
and our analytical work establishes the Froude number as the correct scale.

It is clear from experimental studies of instabilities in fluidized beds (Anderson
& Jackson 1968; El-Kaissy & Homsy 1976; Didwania & Homsy 1981; Nicolas
et al. 1996) that non-uniform structures are initiated near the bottom distributor
and that these structures grow while being convected up through the bed. An initial
non-uniformity having a plane wave structure will become unstable to transverse
perturbations when its voidage amplitude reaches a critical value, εc, given by

εc = (2π/bk̂c)
2, (5.12)

where the bed width b is measured in multiples of the particle radius and k̂c is the
largest wavenumber for which a secondary instability can occur (Re (τ̂1) = 0). This

wavenumber is given by (4.18) if τ̂1 is a real eigenvalue in the whole interval [0, k̂c];
otherwise (4.18) gives the point at which the second eigenvalue τ̂2 crosses the real

axis from below, so that stabilization occurs at a wavenumber larger than k̂c. For the
parameters used here we find that the transition point occurs at F∗ ≈ 0.67, i.e. τ̂1 is

real and positive for k̂ ∈ (0, k̂c(F)) for F > F∗, but forms a complex-conjugate pair

with τ̂2 before stabilizing for F < F∗; in the latter case we use k̂c simply as lower
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Figure 7. Froude number dependence of k̂c according to (4.18). The solid curve represents the
case δ = ν = 0 which is almost identical to the curve for the air-fluidized bed, the broken curve
represents the water-fluidized bed case.

bound for the actual stabilization point. A plot of k̂c over the full range of Froude
numbers is presented in figure 7, where we have set R = 0.019F1/2. Asymptotically,
this quantity behaves like

k̂c ∼
{

3.297 (R/F)1/2 ∼ F−1/4, F � 1
1.321 (R/F3)1/4 ∼ F−5/8, F � 1

(5.13)

from which the asymptotic scaling behaviour of the corresponding amplitude follows:

εc ∼
{

3.63× 10−6 × F/R ∼ F1/2, F � 1
2.26× 10−5 × (F3/R)1/2 ∼ F5/4, F � 1.

(5.14)

The expression (5.12) for εc with b = 103 and k̂c from (4.18) is plotted together with
εcm = σm/τ̂

0
m in figure 8. The two curves for εcm and εc have similar shape and lie

close together for a wide range of Froude numbers. They will move further apart,
however, for narrower beds; in addition, the asymptotic analysis shows that εcm will
become smaller than εc at a small enough Froude number (≈ 0.39 for a bed width
of 500 particle diameters). Most important is the monotonic rise of both εc and εcm
with the Froude number, showing that the critical amplitude in the liquid-fluidized
bed is much smaller than in the gas-fluidized bed, thereby confirming the results of
our consideration of initial secondary growth rates in §3.3.

Let us now consider gas- and liquid-fluidized beds with the same particle size and
bed width and ask how long it is going to take the fastest growing one-dimensional
wave to rise from a certain initial amplitude ε0 to a critical amplitude such that the
given bed width corresponds to either the maximum growth rate or marginal stability
of transverse perturbations. In the linear approximation, this time is given by

∆t = ln (ε/ε0)/σm (ε = εc or εcm). (5.15)

Asymptotically, ε ∼ aFb, with appropriate values of a and b according to (5.11) and
(5.14), so that with R ∼ F1/2 the dimensional time scale becomes

∆td ∼ (ln a− ln ε0 + b lnF)/F. (5.16)
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Figure 8. Froude number dependence of the amplitudes εc (broken curve) and εcm (solid curve)
for a bed width of 500 particle diameters.

The corresponding dimensional travelling distance is then given by

∆sd = ∆td u0 ω ≈ ∆t rpω0 ∼ (ln a− ln ε0 + b lnF)/F1/2 (5.17)

and behaves similarly to ∆t(F). Of course, these estimates make sense only if ε > ε0;
in other words, if the initial disturbance is large enough, the secondary instability
would set in right away. This sets a critical Froude number of Fc = (ε0/a)

1/b, above
(below) which the above estimates are valid for b > 0 (b < 0). Assuming a very
small ε0, and εc or εcm as critical amplitudes, ∆td becomes positive at a very small Fc,
rises sharply to a considerable maximum (still at a small F) and afterwards declines
toward 0 as F →∞. For an ε0 of the order of 10−6, both the air- and water-fluidized
beds considered repeatedly in this paper lie on the declining part of the curve (5.16).
With increasing value of ε0, the critical Froude number Fc increases also until it
exceeds even the Froude number value of the air-fluidized bed. Using for instance the
expression for εc in (5.15), we can calculate critical values of ε0 and obtain 9.95×10−6

and 1.07 × 10−2 for the water- and air-fluidized beds of table 1, respectively. These
values lie in the same range as those found in §3.3 for the critical amplitudes vcp for
which the initial secondary growth rates become comparable to the primary ones thus
further confirming the validity of our asymptotic analysis.

6. Conclusions
The major accomplishments of this study are as follows.
We have identified ρsu

2
0/µ

0
s (times a factor that measures the strength of the

instability) as the appropriate scale for the growth rate of the primary instability in
weakly unstable uniformly fluidized beds. This gives a possible explanation of why
these growth rates are so vastly different for typical air- and water-fluidized beds.

The initial dimensional growth rates of transverse perturbations imposed on grow-
ing one-dimensional plane travelling wave solutions of small amplitude in water- and
air-fluidized beds are found to be of comparable magnitude, but the critical amplitude
of the one-dimensional wave at which the secondary growth rate begins to exceed the
primary growth rate is much larger in the air-fluidized bed.

A closer look at the growth rate of the secondary instability of fully developed small-
amplitude one-dimensional travelling waves exposed the Froude number dependence



Behaviour of one- and two-dimensional disturbances in fluidized beds 113

of this mode, explaining why these growth rates are similar for the water- and
air-fluidized beds.

Finally, we considered two different ways of analysing the critical amplitude of
one-dimensional travelling waves at which the secondary instability will begin to take
over and found both to yield similar estimates. In the water-fluidized bed example
considered the secondary instability sets in at a much smaller amplitude than in
the air-fluidized bed. However, the dimensional time and distance travelled by the
one-dimensional wave having a very small initial amplitude before the secondary
structure is observed are larger for the water-fluidized bed, and this is consistent with
experimental observations.

M.F.G. gratefully acknowledges the support by a fellowship from the Deutsche
Forschungsgemeinschaft under grant nos. Go 605/3-1, -2.

Appendix A
The nonlinear terms of §2 are given by

R3 = R31 + R32 + R33, R4 = R41 + R42 + R43, (A 1)

where the quadratic terms appearing in (2.6c, d) are collected in the expressions

R31 = Fφ̃(∂tṽ − ωk · ∇ṽ)− F(1− φ0)ṽ · ∇ṽ + B′0φ̃(ũ− ṽ) + 1
2
B′′0 φ̃

2k

+φ̃∇p̃− G′0φ̃∇φ̃− α1νµφ̃(∆ + κ̄∇∇·)ũ

+
µ

µ0
s

∇ · {λ′0s φ̃ (∇ · ṽ) I + µ′0s φ̃ [∇ṽ + (∇ṽ)T − 2
3
(∇ · ṽ) I ]}, (A 2a)

R41 = −Fδφ̃ [∂tũ+ (1− ω)k · ∇ũ]− Fδφ0ũ · ∇ũ− B′0φ̃(ũ− ṽ)
−φ̃∇p̃− 1

2
B′′0 φ̃

2k + α2νµφ̃(∆ + κ̄∇∇·)ũ, (A 2b)

while the cubic terms are given by

R32 = Fφ̃ṽ · ∇ṽ + 1
2
B′′0 φ̃

2(ũ− ṽ) + 1
6
B′′′0 φ̃

3k − 1
2
G′′0φ̃

2∇φ̃

+
µ

2µ0
s

∇ · {λ′′0s φ̃2 (∇ · ṽ) I + µ′′0s φ̃
2 [∇ṽ + (∇ṽ)T − 2

3
(∇ · ṽ) I ]}, (A 3a)

R42 = −Fδφ̃ũ · ∇ũ− 1
2
B′′0 φ̃

2(ũ− ṽ)− 1
6
B′′′0 φ̃

3k. (A 3b)

The higher-order terms are of the form

R43 = O(φ̃4) k + O(φ̃3)(ũ− ṽ), R33 = O(φ̃3)∇φ̃+ ∇ · [O(φ̃3)∇ṽ]− R43. (A 4)

Furthermore,

Rp = FE[(1− φ0)R2 − φ0R1]− FṘ1 + FωR′1 + c∆R1 + α1FH∆R2 + ∇ · R3, (A 5)

Rφ = E[(1− φ0)R2 − φ0R1] + δ(1− φ0)Ṙ2 − φ0Ṙ1

+δ(1− φ0)(1− ω)R′2 + φ0ωR
′
1 + (J̃ − H̃)∆R1 − H̃∆R2

+F−1[φ0 ∇ · R3 − (1− φ0)∇ · R4], (A 6)

Rv = R3 +
µκ

1− φ0

∇R1 + ν1

κ̄

φ0

∇R2, Ru = R4 +
ν2κ̄

φ0

∇R2. (A 7)

The constants appearing in §2 and above are defined as follows:

b1 = 1 + B′0 + p′0, bδ = δ + B′0 + p′0; (A 8a)



114 M. F. Göz and S. Sundaresan

ν1 = α1νµ(1− φ0), ν2 = νµ[1− α2(1− φ0)]; (A 8b)

c1 = ĉ− α1FH, ĉ =
µ(1 + κ)

1− φ0

, H =
ν(1 + κ̄)(1− φ0)

Rφ0

; (A 9)

A = φ0 + C, C = δ(1− φ0), E =
B0

Fφ0(1− φ0)
=̇

1− δ
F

, M =
φ0|G0|
F

,

D =
1

F

[
B0

φ0

− B′0 + (1− δ)(1− 2φ0)

]
=̇ (n+ 2)(1− φ0)(1− δ)/F,

H̃ = H[1− α1φ0 − α2(1− φ0)], J̃ = J −H + H̃, J =
φ0ĉ

F
+H,


(A 10)

in notational consistency with Göz (1992); the symbol =̇ denotes the expression
obtained upon using the drag coefficient (2.2). Notice that H̃ = H for α1,2 = 0, whilst

H̃ = 0 for α1,2 = 1. Finally, the constants of (2.10) are

µ1 =
µκ

1− φ0

− ν1

κ̄

φ0

, µ2 =
µκω

1− φ0

+ ν1(1− ω)
κ̄

φ0

= µ1ω + ν1

κ̄

φ0

. (A 11)

Appendix B
This Appendix lists the functional expressions and constants omitted in §3.2. The

various constants ai appearing in §3 are given by

a1 = 1 + B′0 + p′0 − B0/φ0 + (EF + c1k
2)ω + α1FHk

2,

a2 = E + J̃(λ2 + k2) + 2iλ(C − Aω),
a3 = M(λ2 + k2)− (Aω2 − 2Cω + C)λ2 + iλ[D − Eω + (H̃ − J̃ω)(λ2 + k2)],
a4 = [EF + c1(λ

2 + k2)− 2iλFω]/[(1− φ0)(λ
2 + k2)],

a5 = −{Fω2λ2 + G0(λ
2 + k2) + iλ[a1 + (c1ω + α1FH)λ2]}/[(1− φ0)(λ

2 + k2)],
a61 = B0 + µ(λ2 + k2)− iλFω(1− φ0), a62 = B0 − ν1(λ

2 + k2),
a7 = b1 + µ2λ

2 − iλG0, a8 = B0 + ν2(λ
2 + k2) + iλFδφ0(1− ω),

a9 = bδ − ν2

κ̄

φ0

λ2(1− ω).


(B 1)

The rψ,q denote the linearizations of the nonlinear terms Rφ,p at the one-dimensional
solution, applied to the perturbation vector (3.11), and the r(u,w),(η,ρ) denote those of
Rv,u:

rψ = ik[φ0r
y
3 − (1− φ0)r

y
4] + [φ0r

z
3 − (1− φ0)r

z
4]′

−F[φ0ṙ1 − δ(1− φ0)ṙ2] + F[ωφ0r1 + δ(1− φ0)(1− ω)r2]
′

−(FE + ck2)φ0r1 + F[E(1− φ0) + H̃k2]r2 + (cφ0r1 − FH̃r2)′′, (B 2)

rq = −FE[φ0r1 − (1− φ0)r2]− Fṙ1 + Fωr′1 + cr′′1 − ck2r1 + rz′3 + ikry3

+α1FH(r′′2 − k2r2), (B 3)

ru = rz3 +
µκ

1− φ0

r′1 + ν1

κ̄

φ0

r′2, rw = ik

[
µκ

1− φ0

r1 + ν1

κ̄

φ0

r2

]
+ r

y
3 , (B 4)

rη = rz4 + ν2

κ̄

φ0

r′2, rρ = r
y
4 + ν2

κ̄

φ0

ikr2. (B 5)

The functionals bearing a superscript zero are those obtained by averaging over a
period in z, i.e.

r0
u = rz031, r0

η = rz041, (B 6)
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r0
w = ik

[
µκ

1− φ0

r0
1 + ν1

κ̄

φ0

r0
2

]
+ r

y0
31 , r0

ρ = r
y0
41 + ν2

κ̄

φ0

ikr0
2 . (B 7)

Here, the ri denote the linearizations of the Ri and are given by

r1 = ikφ1w + (φ1u+ v1ψ)′, r2 = −ikφ1ρ− (φ1η + u1ψ)′, (B 8)

and r3 = r31 + r32 + O(φ3
1), r4 = r41 + r42 + O(φ3

1), with

r
y
31 = Fφ1ẇ − F[(1− φ0)v1 + ωφ1]w

′ + B′0φ1(ρ− w)− ikG′0φ1ψ + ikφ1q

−α1νµφ1[ρ
′′ − k2ρ+ ikκ̄(η′ + ikρ)]

+
µ

µ0
s

{ik(λ′0s − 2
3
µ′0s )[v′1ψ + φ1(u

′ + ikw)] + µ′0s {[φ1(w
′ + iku)]′ − 2k2φ1w}}, (B 9a)

rz31 = Fφ1u̇− F(1− φ0)v
′
1u− F[(1− φ0)v1 + ωφ1]u

′ + F(v̇1 − ωv′1)ψ
+B′0φ1(η − u) + [B′0(u1 − v1) + B′′0φ1]ψ − G′0(φ1ψ)′ + p′1ψ + φ1q

′

−α1νµ{φ1[η
′′ − k2η + κ̄(ikρ+ η′)′] + (1 + κ̄)u′′1ψ}

+
µ

µ0
s

{(λ′0s + 4
3
µ′0s )(v′1ψ)′ + (λ′0s − 2

3
µ′0s )[φ1(u

′ + ikw)]′

+µ′0s [2(φ1u
′)′ + ikφ1(w

′ + iku)]}, (B 9b)

r
y
32 = Fφ1v1w

′ + 1
2
B′′0φ

2
1(ρ− w)− ik 1

2
G′′0φ

2
1ψ +

µ

µ0
s

{ik(λ′′0s − 2
3
µ′′0s )[φ1v

′
1ψ

+ 1
2
φ2

1(u
′ + ikw)] + 1

2
µ′′0s {[φ2

1(w
′ + iku)]′ − 2k2φ2

1w}}, (B 10a)

rz32 = [Fv1v
′
1 + B′′0φ1(u1 − v1) + 1

2
B′′′0 φ

2
1]ψ + Fφ1(v1u)

′ + 1
2
B′′0φ

2
1(η − u)

− 1
2
G′′0(φ2

1ψ)′ +
µ

2µ0
s

{2(λ′′0s + 4
3
µ′′0s )(φ1v

′
1ψ)′

+(λ′′0s − 2
3
µ′′0s )[φ2

1(u
′ + ikw)]′ + µ′′0s [2(φ2

1u
′)′ + ikφ2

1(w
′ + iku)]}, (B 10b)

and

r
y
41 = −Fδφ1ρ̇− Fδ[φ0u1 + (1− ω)φ1]ρ

′ − B′0φ1(ρ− w)− ikφ1q

+α2νµφ1[ρ
′′ − k2ρ+ ikκ̄(η′ + ikρ)], (B 11a)

rz41 = −Fδφ1η̇ − Fδφ0u
′
1η − Fδ[φ0u1 + (1− ω)φ1]η

′ − Fδ[u̇1 + (1− ω)u′1]ψ

−B′0φ1(η − u)− [B′0(u1 − v1) + B′′0φ1]ψ − p′1ψ − φ1q
′

+α2νµ{φ1[η
′′ − k2η + κ̄(ikρ+ η′)′] + (1 + κ̄)u′′1ψ}, (B 11b)

r
y
42 = −Fδφ1u1ρ

′ − 1
2
B′′0φ

2
1(ρ− w), (B 12a)

rz42 = −[Fδu1u
′
1 + B′′0φ1(u1 − v1) + 1

2
B′′′0 φ

2
1]ψ − Fδφ1(u1η)′ − 1

2
B′′0φ

2
1(η − u). (B 12b)

Using (2.6a, b) to eliminate v′1, u
′
1 in favour of φ̇1, φ

′
1, and (3.16), (3.17) to eliminate

w, ρ in favour of u′, η′, ψ̇, ψ′, then rψ can be written as

rψ = {[B′0(u1 − v1) + B′′0φ1 + p′1]ψ}′ + k2φ0G
′
0φ1ψ − φ0G

′
0(φ1ψ)′′ + (φ1q

′)′ − k2φ1q

+(β1 + ν3k
2)φ′1η −

(
β2 + 2

µ

µ0
s

φ0µ
′0
s k

2

)
φ′1u− β3(u1ψ)′ − β4(v1ψ)′

−2F[φ0v1 + δ(1− φ0)u1]ψ̇
′ + 2F[φ0ωv1 − δ(1− φ0)(1− ω)u1]ψ

′′

−2Fφ0[(φ̇1 − ωφ′1)u]′ − 2Fδ(1− φ0){[φ̇1 + (1− ω)φ′1]η}′
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+[(FH̃u1 + cφ0v1)ψ]′′′ + [(FH̃η + cφ0u)φ
′
1]
′′ + β5(φ1ψ̇)′′ − β6(φ1ψ

′)′′

+(β7 − β12k
2)φ1ψ̇ + (β8 − β13k

2)φ1ψ
′ + β9φ̇1ψ̇ + β10(φ̇1ψ

′ + φ′1ψ̇)

+β11φ
′
1ψ
′ +

ν3

φ0

A+
µ

µ0
s

φ0

1− φ0

B + O(φ2
1), (B 13)

with

ν3 = νµ[α1φ0 + α2(1− φ0)], (B 14)

the additional types of terms due to α1,2,

A = −φ0φ
′
1η
′′ + (1 + κ̄){[φ̇1 + (1− ω)φ′1]

′ψ}′ + φ1[ψ̇ + (1− ω)ψ′]′′

+κ̄{φ1[ψ̇ + (1− ω)ψ′]′}′, (B 15)

due to the variable viscosity,

B = −k2(λ′0s − 2
3
µ′0s )(φ̇1 − ωφ′1)ψ + 2µ′0s (1− φ0)(φ

′
1u
′)′ + 2µ′0s [φ1(ψ̇ − ωψ′)′]′

+(λ′0s − 2
3
µ′0s )[φ1(ψ̇ − ωψ′)]′′ + (λ′0s + 4

3
µ′0s )[(φ̇1 − ωφ′1)ψ]′′, (B 16)

and the various coefficients

β1 = B′0 − β3, β2 = B′0 + β4, β3 = F[E(1− φ0) + H̃k2], β4 = φ0(FE + ck2),

β5 =
cφ0

1− φ0

− FH̃
φ0

=
F(J̃φ0− H̃)

φ0(1− φ0)
, β6 =

cφ0ω

1− φ0

+
FH̃(1− ω)

φ0

= β5ω+
FH̃

φ0

,

β7 = −
(
β1

φ0

+
β2

1− φ0

)
=

1

φ0(1− φ0)

[
FE(1− 2φ0)− B′0 − F(J̃φ0 − H̃)k2

]
,

β8 =
ωβ2

1− φ0

− 1− ω
φ0

β1, β9 = 2F
δ(1− φ0)

2 − φ2
0

φ0(1− φ0)
,

β10 =
2F

φ0(1− φ0)
[φ2

0ω + δ(1− φ0)
2(1− ω)],

β11 =
2F

φ0(1− φ0)
[δ(1− φ0)

2(1− ω)2 − φ2
0ω

2], β13 = ν3

1 + κ̄

φ0

− β12ω,

β12 = ν3

1 + κ̄

φ0

+
µ

µ0
s

φ0

1− φ0

(λ′0s + 4
3
µ′0s ).



(B 17)

The terms proportional to exp(iλz) follow as given in (3.20a), with

γ1 = φ0G
′
0(λ

2 + k2)− aλ2 +
iλ

φ0

[φ0B
′′
0 + FH̃λ2 − β1 − ν3(1 + κ̄)λ2]

+(σ − iλω)

[
β7 − (β5 + β12)λ

2 − µ

µ0
s

φ0

1− φ0

(λ′0s − 2
3
µ′0s )k2

]
,

γ2 = β7 − β5λ
2 − β12k

2 + σβ9 + iλβ10 −
µ

µ0
s

φ0

1− φ0

(λ′0s − 2
3
µ′0s )λ2,

γ3 = iλ(β1 − FH̃λ2 + ν3k
2)− 2iλFδ(1− φ0)[σ + iλ(1− ω)],

γ4 = −iλ

(
β2 + cφ0λ

2 + 2
µ

µ0
s

µ′0s φ0k
2

)
− 2iλFφ0(σ − iλω).


(B 18)

Obviously, the terms ∼ exp(−iλz) are obtained by substituting the coefficients of
the perturbation variables by their complex conjugates; this gives r−. Making use of
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(3.4b, c), the constant terms (with respect to z) enter r0 as described in (3.20c), where

γ5 = β1 + ν3(λ
2 + k2), γ6 = β2 + 2

µ

µ0
s

µ′0s φ0k
2,

γ7 = β7 − β12k
2 − ν3

φ0

λ2, γ8 = k2γ̃9 + iλγ̃8,

γ̃8 = β8 − β13k
2 − ν3

φ0

(1− ω)λ2, γ̃9 = φ0G
′
0 − (σ − iλω)(λ′0s − 2

3
µ′0s ).


(B 19)

Appendix C
In §3.3, the pressure coefficients c±q , c̃

±
q , c

0
q, follow directly from (3.21) upon replacing

ψ̈± by the leading approximations of (3.19):

c+
q = a4 −

Fa2

A(1− φ0)(λ2 + k2)
= c−q , c̃

+
q = a5 −

Fa3

A(1− φ0)(λ2 + k2)
= c̃−q ,

c0
q = −(1− δ)

EF

Ak2
+

1

A

(
δc− νµ1 + κ̄

φ0

[1− (1− φ0)(α2 − α1δ)]

)
, c̃0

q = −δG0

A
.

 (C 1)

The velocity coefficients like c+
u , stemming from the ‘expansion’ (3.28) with respect to

ψ+ and ψ̇+ read

c+
u =

ρ6ζ6 − ρ8ζ5

ρ6ρ7 − ρ5ρ8

= c−u , c̃+
u =

ρ7ζ5 − ρ5ζ6

ρ6ρ7 − ρ5ρ8

= c̃−u ,

c+
η =

1

a62

[ρ1c
+
u + F(1− φ0)c̃

+
u − ζ1] = c−η , c̃+

η =
1

a62

[ρ2c
+
u + a61c̃

+
u − ζ2] = c̃−η ,

 (C 2)

where

ρ1 = a61 − F(1− φ0)a2/A, ρ2 = −F(1− φ0)a3/A,
ρ3 = a8 − Fδφ0a2/A, ρ4 = Fδφ0a3/A,
ζ1 = iλ[µ1 − (1− φ0)c

+
q ], ζ2 = a7 − iλ(1− φ0)c̃

+
q ,

ζ3 = −iλ

(
ν2

κ̄

φ0

+ φ0c
+
q

)
, ζ4 = −(a9 + iλφ0c̃

+
q );

ρ5 = ρ1ρ3 + Fδφ0ρ2 − B0a62, ρ6 = F(1− φ0)ρ3 + Fδφ0a61,
ρ7 = a8ρ2 − ρ1ρ4, ρ8 = a61a8 − F(1− φ0)ρ4 − B0a62,
ζ5 = ρ3ζ1 + Fδφ0ζ2 + a62ζ3, ζ6 = a8ζ2 + a62ζ4 − ρ4ζ1.


(C 3)

They have been determined by inserting the ansatz (3.28) into (3.22a) and (3.23a),
which gives, e.g. from (3.22a),

ψ̇+

{[
a61 − F(1− φ0)

a2

A

]
c+
u + F(1− φ0)c̃

+
u − a62c

+
η + iλ(1− φ0)c

+
q − iλµ1

}
+ψ+

{
−F(1− φ0)

a3

A
c+
u + a61c̃

+
u − a62c̃

+
η − a7 + iλ(1− φ0)c̃

+
q

}
= O(φ±),

and treating ψ+ and ψ̇+ as sorts of linearly independent basis functions, so that within
the considered approximation the coefficients in the last equation must vanish. This
gives two linear relations for the four coefficients sought c+

u , c̃+
u , c+

η , c̃+
η ; the other two

follow from insertion of (3.28) into (3.23a). The coefficients with the zero index, like
c0
u, c

0
η, etc., follow upon setting λ = 0 in (C 2) and (C 3).

The coefficients θi occurring in (3.29) follow from inserting (3.28) into the expres-
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sions (3.20a, c) for r+ and r0; thus

θ1 = F−1 (γ2 + γ3c
0
η + γ4c

0
u − k2c0

q), θ2 = F−1 (γ1 + γ3c̃
0
η + γ4c̃

0
u − k2c̃0

q),

θ3 = F−1 [γ7 − k2c+
q + iλ(γ6c

+
u − γ5c

+
η )],

θ4 = F−1 [γ8 − k2c̃+
q + iλ(γ6c̃

+
u − γ5c̃

+
η )].

 (C 4)

Appendix D
The coefficient χ of (4.12) follows from substituting

ŵ+ = ik̂δ3ψ̃+, ρ̂+ = ik̂δ4ψ̃+; (ŵ, ρ̂)− = ik̂(δ̄3, δ̄4)ψ̃−, (D 1)

where

δ3 =
a0

8δ1 + a0
62δ2

B0a
0
62 − a0

61a
0
8

, δ4 =
B0δ1 + a0

61δ2

B0a
0
62 − a0

61a
0
8

, (D 2)

δ1 = G0 + (1− φ0)a
0
5 + iλµ2, δ2 = φ0a

0
5 + iλ(1− ω)ν2

κ̄

φ0

(D 3)

upon solving (4.11), so that

χ = φ0G
′
0 − a0

5 + B′0(δ3 − δ4) + FE[φ0δ3 + (1− φ0)δ4]− ν3

[
λ2δ4 + iλκ̄

1− ω
φ0

]
. (D 4)

The coefficients χi appearing in equations (4.16)–(4.19) stem from writing the disper-
sion relation (4.13) in the alternative form

τ̂4 + χ1k̂
2τ̂3 + χ2k̂

4τ̂2 + (χ3k̂
4 − χ5)k̂

2τ̂+ (χ4k̂
4 − χ6)k̂

4 = 0, (D 5)

so that

χ1 = µ̃+ ξ1 + 2ξ2, χ2 = µ̃(ξ1 + 2ξ2) + ξ2
2 + ξ2

3 + 2ξ1ξ2,

χ3 = µ̃(ξ2
2 + ξ2

3 + 2ξ1ξ2) + ξ1(ξ
2
2 + ξ2

3), χ4 = µ̃ξ1(ξ
2
2 + ξ2

3),

χ5 =
2λ0ξ5

F(1− φ0 + δφ0)
, χ6 =

2λ0

F(1− φ0 + δφ0)
(ξ2ξ5 − ξ3ξ4).

 (D 6)
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Göz, M. F. 1995a Quasi-stationary instabilities in fluidized beds. Phys. Lett. A 200, 355–359.
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